
TakeThis: 도메인에 특화된 개념의 유사도 기반 대학
교과목 추천 시스템

손병호 O 이태한 구명완

서강대학교 컴퓨터공학과

bhson99@sogang.ac.kr, sogangcse@sogang.ac.kr, mwkoo@sogang.ac.kr

TakeThis: A University Course Recommendation System
Based on Domain-Specific Concept Similarities

Bjongho SonO TaeHan Lee Myoung-Wan Koo

Department of Computer Science and Engineering, Sogang University

ABSTRACT

When measuring the semantic similarity between two concepts, word2vec is a typical choice.

However, word2vec inherently possesses a trade-off between training efficiency and semantic

expressivity. Our approach overcomes this trade-off by viewing a concept as a structured collection

of relevant keywords rather than a natural language word. We evaluate our approach by

implementing our university course recommendation system, TakeThis. The result of TakeThis is

4.65 times more accurate than the theoretical baseline.

1. INTRODUCTION
When measuring the semantic similarity between two

concepts, one possible way is to view the concepts as
natural language words and compute the similarity
between two word2vec vectors. word2vec methods such
as CBOW[1], skip-gram[2] are usually given as pretrained
embeddings, trained on large public corpora such as
Wikipedia. However, these public corpora are highly likely
that they don’t contain domain-specific concepts (e.g.,
technical terms, made-up words, etc.), so that word2vec
fails to capture the domain-specific semantics. One could
handle this issue by fine-tuning the word embeddings by
using private corpora containing domain-specific words.
However, this is too costly in that it requires additional
training and corpora. Hence, word2vec inherently
possesses a trade-off between training efficiency and
semantic expressivity.

Our approach overcomes the trade-off by viewing a
concept as a structured collection of relevant keywords –
which we call a signature, rather than a natural language

1 This research was supported by the MSIT (Ministry of
Science ICT), Korea, under the National Program for
Excellence in SW (2015-0-00910) supervised by the IITP

word. Provided that a corpus1 for each domain-specific
concept is available, our approach uses keyword extractor
to encode the domain-specific concepts as signatures.

We demonstrate the effectiveness of our approach by
implementing a university recommendation system
TakeThis, in which the measurement of similarities
between university courses (domain-specific concept) and
a career (general concept) is included.

2. RECOMMENDATION SYSTEM
2.1 Overview
 Problem Formulation. Given 𝑘 and a career name
from the user, the goal of the recommendation system
is to return top-k relevant courses for the given
career.
 For example, if the user gives "graphics engineer" and
𝑘 = 5 as input, the system should return 5	courses,
possibly including courses such as Introduction to
computer graphics. In order to find most relevant courses
for the given career name, it is crucial that we accurately

(Institute for Information & Communications Technology
Planning & Evaluation).

2021년 한국소프트웨어종합학술대회 논문집

1294

measure the semantic similarities between two concepts,
namely careers and courses. Our approach is to encode
these concepts as vectors by keyword extraction and
measure their similarities by simply computing the
similarities between vectors. This may seem like a typical
word embedding in that a concept is encoded into a
vector. However, our approach does not require any
learning phases to encoding the concepts. Furthermore,
the concepts to be encoded may have domain-specific
semantics - the semantics of a course name is tightly
coupled with a particular university, a professor, etc. For
this, we maintain our own data structures - the glossary,
course signatures, and the career signature.
 Definition 1. The glossary is a set of keywords,
obtained by collecting all the keywords extracted by
applying the keyword extractor on the corpus for each
course, where each corpus contains the description for
the corresponding course.
 Definition 2. A signature for a concept (i.e.,
course/career) is a vector of size 𝑛 = |𝑔𝑙𝑜𝑠𝑠𝑎𝑟𝑦|, where
the i-th value indicates how relevant the i-th keyword
in the glossary is to the concept of interest, provided
that the glossary is ordered appropriately.

By encoding concepts as signatures, we can canonically
compute their distances by typical vector operations. Our
signature encoding process is done in three stages. First,
we build the glossary out of course corpora, thereby
encoding all courses as signatures. Second, with the
glossary, we encode the career given by the user. Third,
we measure the course-career similarities by computing
the similarities between their signatures, then take top-k
courses as output. The process is depicted in Figure 1.
We explain each step in more detail.

Figure 1. Three stages to measuring similarities between
each course and the given career

2.2 Keyword Extraction
To encode a course into a signature, we apply a

keyword extractor on the corresponding corpus for the
course. By doing so, we obtain 𝑝 pairs each of form
(keyword, score), where 𝑝 is a hyperparameter indicating
the number of keywords to be extracted. For example,
keyword extractor on corpus for the course database
systems with 𝑝 = 5 gives (“database”, 0.505), (“systems”,
0.3382), (“differences”, 0.323), (“data”, 0.317), and
(“architectures”, 0.315). Then the set obtained by
collecting every keyword that occurs at least once in the
result of each course, becomes our glossary. With this
glossary, we can encode a course into a signature, by
setting the scores of each entry in the signature to be the
scores from the keyword extractor. Note that a course
signature is a sparse vector, since all but 𝑝 entries have
value zero.

2.3 Keyword Similarity

The signature of the given career is in exactly the same
format as those of courses. However, we can’t use the
keyword extractor to encode it into a signature, as we did
for the courses. This is because unlike courses, we have
no fixed list of all possible careers and the corpora for that
matter, since a user may give an arbitrary career name as
input. Thus, we use a different method to build the career
signature. In particular, the i-th value of the career
signature is set to be the similarity score between the
career name and the i-th keyword in the glossary. We
define our own similarity measure 𝑠𝑖𝑚_𝑘𝑤 in definition 4,
to compute the similarity score.

Definition 3. The document function	𝑑𝑜𝑐𝑠 ∶ 	𝑠𝑡𝑟𝑖𝑛𝑔 →
2!"# is defined by 𝑑𝑜𝑐𝑠(𝑠𝑡𝑟) = {𝑑 ∈ 𝐷𝑜𝑐|	𝑑		𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠	𝑠𝑡𝑟},
where 𝐷𝑜𝑐 is the set of all documents.

Definition 4. The keyword similarity function 𝑠𝑖𝑚_𝑘𝑤 ∶
𝑠𝑡𝑟𝑖𝑛𝑔 × 𝑠𝑡𝑟𝑖𝑛𝑔 → [0,1] is defined by

𝑠𝑖𝑚_𝑘𝑤(𝑘𝑤$, 𝑘𝑤%) =
|𝑑𝑜𝑐𝑠(𝑘𝑤$) ∩ 𝑑𝑜𝑐𝑠(𝑘𝑤%)|
|𝑑𝑜𝑐𝑠(𝑘𝑤$) ∪ 𝑑𝑜𝑐𝑠(𝑘𝑤%)|

 In practice, we estimate the output of 𝑑𝑜𝑐𝑠(𝑠𝑡𝑟) by the
number of results obtained by web searching with query
being 𝑠𝑡𝑟. The intuition behind definition 4 is that the more
similar two keywords are, the more documents containing
both keywords exist, ignoring the effect of the frequency of
a single keyword per se.

2.4 Signature Similarity

Now that we have signatures for each course and the
signature of the given career, measuring similarities
between each pair is a trivial step. We use a typical vector

2021년 한국소프트웨어종합학술대회 논문집

1295

similarity measure, which is cosine similarity, as our
signature similarity measure.

Definition 5. The signature similarity function
𝑠𝑖𝑚_𝑠𝑖𝑔: [0,1]& × [0,1]& → [0,1] is defined by

𝑠𝑖𝑚_𝑠𝑖𝑔(𝑠𝑖𝑔$, 𝑠𝑖𝑔%) =
⟨𝑠𝑖𝑔$, 𝑠𝑖𝑔%	⟩
‖𝑠𝑖𝑔$‖ ⋅ ‖𝑠𝑖𝑔%‖

, where 𝑛 = |𝑔𝑙𝑜𝑠𝑠𝑎𝑟𝑦|.
With this measure, taking the top-k most similar courses
against the given career gives the final output of our
system.

3. EXPERIMENT
3.1 Experimental Setup
 We evaluate our system by implementing TakeThis,
now available at [3]. We share our whole experiment by
the video demo on [4]. For simplicity, we restrict our
attention to only CSE (Computer Science and
Engineering) courses and CSE careers. We set 𝑘 = 5
(number of courses) and 𝑝 = 5	 (number of keywords for
keyword extraction)	as our hyperparameters.
 Our system is based on the following external sources:
(1) Corpus: For each course, we collected the corpus from
[5]. It contains 58 course descriptions provided by the
CSE department of Sogang University.
(2) Keyword Extractor: We used KeyBert[6], which is
based on BERT, as our keyword extractor described in
section 2.2.
(3) Document Function: We used Google Custom Search
API[7] as our document function 𝑑𝑜𝑐𝑠 described in
definition 3. We restrict the documents to be from one of
stackexchange.com, ziprecruiter.com, hired.com,
indeed.com, careerexplorer.com, quora.com

3.2 Evaluation
 We evaluate the effectiveness of our system by giving
representative CSE careers as inputs and compare the
output courses against the test data. The result is shown
in Table 1. To measure the plausibility of the result, we
established a carefully annotated test data which consist
of 5 most relevant courses for each career. Then, we
compute the average hit ratio of our system. We define
the hit ratio for a career to be the accuracy of our 5
recommendations with respect to the test data. Our result
yields the average hit ratio 𝑟 = 0.4. By simple
combinatoric calculations, the hit ratio of random 5
recommendations from 58 courses yields 𝑟 = 0.086. With
this theoretical baseline, our system shows 4.65 times
better accuracy.

Table 1. Result of TakeThis for three selected careers. The
hit course is denoted by (*). Score indicates the cosine
similarity between a career and a course.

Career Course Name Score

Graphics
Engineer
(𝑟 = 0.4)

C programming 0.373
Intro. to Computer Graphics (*) 0.074

Windows Programming (*) 0.055
Internship 0.054

Operating System 0.025

Data
Scientist
(𝑟 = 0.4)

C programming 0.376
Database Systems (*) 0.069

Data Mining (*) 0.069
Programming Languages 0.049

Intro. to Data Communication 0.046

Hardware
Engineer
(𝑟 = 0.4)

C programming 0.370
Basic SoC Design (*) 0.148

CSE Laboratory I 0.140
Intro. to CSE 0.059

Computer Architecture (*) 0.049

4. CONCLUSION
 We propose TakeThis, a university course
recommendation system based on lightweight measuring
of similarities for domain-specific concepts. Our empirical
study shows that TakeThis is 4.65 times more accurate
than the theoretical baseline. We address that our
approach is not restricted only to our specific application
but is broadly applicable to many problems that requires
approximating the semantics of domain-specific concepts,
when a corpus for each concept is available.

REFERENCE
[1] Mikolov, Tomas, et al. "Efficient estimation of word

representations in vector space." arXiv preprint
arXiv:1301.3781 (2013).

[2] Mikolov, Tomas, et al. "Distributed representations of
words and phrases and their compositionality."
Advances in neural information processing systems.
2013.

[3] https://github.com/byhoson/takethis
[4] https://youtu.be/i2J0_EAGYWsAdsf
[5] https://ecs.sogang.ac.kr/ecs/ecs03_2_1.html
[6] https://maartengr.github.io/KeyBERT/
[7] https://developers.google.com/custom-

search/v1/overview

2021년 한국소프트웨어종합학술대회 논문집

1296

	Main
	Return

