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ABSTRACT 

When measuring the semantic similarity between two concepts, word2vec is a typical choice. 

However, word2vec inherently possesses a trade-off between training efficiency and semantic 

expressivity. Our approach overcomes this trade-off by viewing a concept as a structured collection 

of relevant keywords rather than a natural language word. We evaluate our approach by 

implementing our university course recommendation system, TakeThis. The result of TakeThis is 

4.65 times more accurate than the theoretical baseline. 

 

1. INTRODUCTION 
When measuring the semantic similarity between two 

concepts, one possible way is to view the concepts as 
natural language words and compute the similarity 
between two word2vec vectors. word2vec methods such 
as CBOW[1], skip-gram[2] are usually given as pretrained 
embeddings, trained on large public corpora such as 
Wikipedia. However, these public corpora are highly likely 
that they don’t contain domain-specific concepts (e.g., 
technical terms, made-up words, etc.), so that word2vec 
fails to capture the domain-specific semantics. One could 
handle this issue by fine-tuning the word embeddings by 
using private corpora containing domain-specific words. 
However, this is too costly in that it requires additional 
training and corpora. Hence, word2vec inherently 
possesses a trade-off between training efficiency and 
semantic expressivity. 

Our approach overcomes the trade-off by viewing a 
concept as a structured collection of relevant keywords – 
which we call a signature, rather than a natural language 

 
1 This research was supported by the MSIT (Ministry of 
Science ICT), Korea, under the National Program for 
Excellence in SW (2015-0-00910) supervised by the IITP 

word. Provided that a corpus1 for each domain-specific 
concept is available, our approach uses keyword extractor 
to encode the domain-specific concepts as signatures. 

We demonstrate the effectiveness of our approach by 
implementing a university recommendation system 
TakeThis, in which the measurement of similarities 
between university courses (domain-specific concept) and 
a career (general concept) is included. 
 
2. RECOMMENDATION SYSTEM 
2.1 Overview 
  Problem Formulation. Given 𝑘 and a career name 
from the user, the goal of the recommendation system 
is to return top-k relevant courses for the given 
career.  
  For example, if the user gives "graphics engineer" and 
𝑘 = 5 as input, the system should return 5	courses, 
possibly including courses such as Introduction to 
computer graphics. In order to find most relevant courses 
for the given career name, it is crucial that we accurately 

(Institute for Information & Communications Technology 
Planning & Evaluation). 
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measure the semantic similarities between two concepts, 
namely careers and courses. Our approach is to encode 
these concepts as vectors by keyword extraction and 
measure their similarities by simply computing the 
similarities between vectors. This may seem like a typical 
word embedding in that a concept is encoded into a 
vector. However, our approach does not require any 
learning phases to encoding the concepts. Furthermore, 
the concepts to be encoded may have domain-specific 
semantics - the semantics of a course name is tightly 
coupled with a particular university, a professor, etc. For 
this, we maintain our own data structures - the glossary, 
course signatures, and the career signature. 
  Definition 1. The glossary is a set of keywords, 
obtained by collecting all the keywords extracted by 
applying the keyword extractor on the corpus for each 
course, where each corpus contains the description for 
the corresponding course. 
  Definition 2. A signature for a concept (i.e., 
course/career) is a vector of size 𝑛 = |𝑔𝑙𝑜𝑠𝑠𝑎𝑟𝑦|, where 
the i-th value indicates how relevant the i-th keyword 
in the glossary is to the concept of interest, provided 
that the glossary is ordered appropriately. 

By encoding concepts as signatures, we can canonically 
compute their distances by typical vector operations. Our 
signature encoding process is done in three stages. First, 
we build the glossary out of course corpora, thereby 
encoding all courses as signatures. Second, with the 
glossary, we encode the career given by the user. Third, 
we measure the course-career similarities by computing 
the similarities between their signatures, then take top-k 
courses as output. The process is depicted in Figure 1. 
We explain each step in more detail. 

 

 
Figure 1. Three stages to measuring similarities between 
each course and the given career 

2.2 Keyword Extraction 
To encode a course into a signature, we apply a 

keyword extractor on the corresponding corpus for the 
course. By doing so, we obtain 𝑝 pairs each of form 
(keyword, score), where 𝑝 is a hyperparameter indicating 
the number of keywords to be extracted. For example, 
keyword extractor on corpus for the course database 
systems with 𝑝 = 5 gives (“database”, 0.505), (“systems”, 
0.3382), (“differences”, 0.323), (“data”, 0.317), and 
(“architectures”, 0.315). Then the set obtained by 
collecting every keyword that occurs at least once in the 
result of each course, becomes our glossary. With this 
glossary, we can encode a course into a signature, by 
setting the scores of each entry in the signature to be the 
scores from the keyword extractor. Note that a course 
signature is a sparse vector, since all but 𝑝 entries have 
value zero. 
 
2.3 Keyword Similarity 

The signature of the given career is in exactly the same 
format as those of courses. However, we can’t use the 
keyword extractor to encode it into a signature, as we did 
for the courses. This is because unlike courses, we have 
no fixed list of all possible careers and the corpora for that 
matter, since a user may give an arbitrary career name as 
input. Thus, we use a different method to build the career 
signature. In particular, the i-th value of the career 
signature is set to be the similarity score between the 
career name and the i-th keyword in the glossary. We 
define our own similarity measure 𝑠𝑖𝑚_𝑘𝑤 in definition 4, 
to compute the similarity score. 

Definition 3. The document function	𝑑𝑜𝑐𝑠 ∶ 	𝑠𝑡𝑟𝑖𝑛𝑔 →
2!"# is defined by 𝑑𝑜𝑐𝑠(𝑠𝑡𝑟) = {𝑑 ∈ 𝐷𝑜𝑐|	𝑑		𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠	𝑠𝑡𝑟}, 
where 𝐷𝑜𝑐 is the set of all documents. 

Definition 4. The keyword similarity function 𝑠𝑖𝑚_𝑘𝑤 ∶
𝑠𝑡𝑟𝑖𝑛𝑔 × 𝑠𝑡𝑟𝑖𝑛𝑔 → [0,1] is defined by 

𝑠𝑖𝑚_𝑘𝑤(𝑘𝑤$, 𝑘𝑤%) =
|𝑑𝑜𝑐𝑠(𝑘𝑤$) ∩ 𝑑𝑜𝑐𝑠(𝑘𝑤%)|
|𝑑𝑜𝑐𝑠(𝑘𝑤$) ∪ 𝑑𝑜𝑐𝑠(𝑘𝑤%)|

 

  In practice, we estimate the output of 𝑑𝑜𝑐𝑠(𝑠𝑡𝑟) by the 
number of results obtained by web searching with query 
being 𝑠𝑡𝑟. The intuition behind definition 4 is that the more 
similar two keywords are, the more documents containing 
both keywords exist, ignoring the effect of the frequency of 
a single keyword per se. 
 
2.4 Signature Similarity 

Now that we have signatures for each course and the 
signature of the given career, measuring similarities 
between each pair is a trivial step. We use a typical vector 
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similarity measure, which is cosine similarity, as our 
signature similarity measure. 

Definition 5. The signature similarity function 
𝑠𝑖𝑚_𝑠𝑖𝑔: [0,1]& × [0,1]& → [0,1] is defined by 

𝑠𝑖𝑚_𝑠𝑖𝑔(𝑠𝑖𝑔$, 𝑠𝑖𝑔%) =
⟨𝑠𝑖𝑔$	, 𝑠𝑖𝑔%	⟩
‖𝑠𝑖𝑔$‖ ⋅ ‖𝑠𝑖𝑔%‖

 

, where 𝑛 = |𝑔𝑙𝑜𝑠𝑠𝑎𝑟𝑦|. 
With this measure, taking the top-k most similar courses 
against the given career gives the final output of our 
system. 
 
3. EXPERIMENT 
3.1 Experimental Setup 
  We evaluate our system by implementing TakeThis, 
now available at [3]. We share our whole experiment by 
the video demo on [4]. For simplicity, we restrict our 
attention to only CSE (Computer Science and 
Engineering) courses and CSE careers. We set 𝑘 = 5 
(number of courses) and 𝑝 = 5	 (number of keywords for 
keyword extraction)	as our hyperparameters. 
  Our system is based on the following external sources: 
(1) Corpus: For each course, we collected the corpus from 
[5]. It contains 58 course descriptions provided by the 
CSE department of Sogang University. 
(2) Keyword Extractor: We used KeyBert[6], which is 
based on BERT, as our keyword extractor described in 
section 2.2. 
(3) Document Function: We used Google Custom Search 
API[7] as our document function 𝑑𝑜𝑐𝑠 described in 
definition 3. We restrict the documents to be from one of 
stackexchange.com, ziprecruiter.com, hired.com, 
indeed.com, careerexplorer.com, quora.com 
 
3.2 Evaluation 
  We evaluate the effectiveness of our system by giving 
representative CSE careers as inputs and compare the 
output courses against the test data. The result is shown 
in Table 1. To measure the plausibility of the result, we 
established a carefully annotated test data which consist 
of 5 most relevant courses for each career. Then, we 
compute the average hit ratio of our system. We define 
the hit ratio for a career to be the accuracy of our 5 
recommendations with respect to the test data. Our result 
yields the average hit ratio 𝑟 = 0.4. By simple 
combinatoric calculations, the hit ratio of random 5 
recommendations from 58 courses yields 𝑟 = 0.086. With 
this theoretical baseline, our system shows 4.65 times 
better accuracy. 
  
 

Table 1. Result of TakeThis for three selected careers. The 
hit course is denoted by (*). Score indicates the cosine 
similarity between a career and a course. 

Career Course Name Score 
 

Graphics 
Engineer 
(𝑟 = 0.4) 

C programming 0.373 
Intro. to Computer Graphics (*) 0.074 

Windows Programming (*) 0.055 
Internship 0.054 

Operating System 0.025 
 

Data 
Scientist 
(𝑟 = 0.4) 

C programming 0.376 
Database Systems (*) 0.069 

Data Mining (*) 0.069 
Programming Languages 0.049 

Intro. to Data Communication 0.046 
 

Hardware 
Engineer 
(𝑟 = 0.4) 

C programming 0.370 
Basic SoC Design (*) 0.148 

CSE Laboratory I 0.140 
Intro. to CSE 0.059 

Computer Architecture (*) 0.049 
 
4. CONCLUSION 
  We propose TakeThis, a university course 
recommendation system based on lightweight measuring 
of similarities for domain-specific concepts. Our empirical 
study shows that TakeThis is 4.65 times more accurate 
than the theoretical baseline. We address that our 
approach is not restricted only to our specific application 
but is broadly applicable to many problems that requires 
approximating the semantics of domain-specific concepts, 
when a corpus for each concept is available. 
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