A Core Calculus for Equational
Proofs of Cryptographic Protocols

Byoungho Son
SVLAB Semniar
2024.11.06

Literature

* Cryptographic Protocol Analysis

 Symbolic security
* Message: term
* Attack: term rewriting
 Computational security (Our Scope)
* Message : bitstring
e Attack: Polynomial-time Probabilistic Turing Machine (PPTM)

Literature

* Cryptographic Protocol Analysis

 Symbolic security
* Message: term
* Attack: term rewriting
 Computational security (Our Scope)
* Message : bitstring
e Attack: Polynomial-time Probabilistic Turing Machine (PPTM)

e Remark

 Computational security subsumes symbolic security
* Symbolic security models attackers by specifying what attackers can do
« Computational security models attackers by specifying what attackers cannot do

Literature

* How to prove computational security?
* Manual Proof by cryptographers > Theorem Proving > Model Checking
* De facto standard for TP : Universal Composability (UC)

Real Ideal
Protocol ~ Protocol
Computational A Polynomial-time TM cannot

Indistinguishability = distinguish between the two

Universal Composability

* Pros: Composability
* Cons: Scalability

7=Ri+H~R{+H, =---=R.+Hr ~ R + H, = ldeal

* = : exact equivalence (bisimulation)

* = :approximate equivalence
* (computational indistinguishability assumption)

Contribution

* IPDL (Interactive Probabilistic Dependency Logic)
* Protocol description language
* for distributed, interactive message-passing cryptographic protocols
* Equational logic for=& =
« sound w.r.t computational model (i.e. | P~ Qimplies [P~ Q)
* does not require explicit bisimulation

* This paper introduces IPDL & mechanizes itin Coq

IPDL : Basic Syntax

ret (e) | samp (D) | readc
if ethenR; elseRy | x: 7« R; S
o=R|P||QO]| newo:7rinP

Channels i,0,c
Reactions R, S =
|
Protocols P,Q =
PLL, o] :=
new c in
c ::= samp flip()
0O .=

X <- read c;
y <- read 1i;
ret (x xor y)

flip

& /
Xor

IPDL : Hello World!

Goal : Prove the Exact Equivalence

P[i, o] :=
new ¢ in
c ::= samp flip()

_ <- read ti;
samp flip()

|
0 ::=
X <- read c;

y <- read 1;
ret (x xor y) Ideal Protocol

Real Protocol

ArP:I—=0 AP =P,:1— O

REFL SYM
ArP=Q:1—-0 ArP=P:1—-0 ArPy=P;:1—>0
ArPi=P,:1 >0 A+rPr,=P3:1 —> 0O
TRANS
ArP,=Ps:1—0
FO:A —A, AFP=Q:1—0 (A\FP=0:1—0)eT.
EMBED AXIOM
A, - 6% (P) = 6*(0) : 0*(I) — 6*(0) AFP=0:1—0

0:TEA A; - FR=R :IU{o} >
Ar(o=R)=(o:=R'):I— {o}

CONG-REACT

i¢LO ArP=Q:1—O0
ArP=0Q:1U{i} - O

INPUT-UNUSED

ArP=P :IU0, — 0, ArQ:1UO0; — O,
ArP||Q=P ||Q:]— 0, U0,

CONG-COMP-LEFT

IPDL : Hello World!

0:B A; -FR:IU{o} > 1

A;x:t+S:1U{o} > B
FOLD-BIND
Ar(newc:7ino:=x:7«readc;S||c:=R)=(0o:=x:7«R;S): I — {0}

only sound when c is used linearly!

P[i, o] :=
new C in
P[i, a] :

c_::= samp flip()

0 i:
éii_j:-§‘\\\\\\\ x <- samp flip();
i y <- read i;

ret (x xor y)

X <- read c;
y <- read 1i;
ret (x xor y)

Real Protocol

IPDL : Hello World!

reactions form a commutative monad

X <- samp flip(); y <- read ti;
'<:y <- read i; X <- samp flip();
ret (x xor y) ret (x xor y)

IPDL : Hello World!

axiom for exact equivalence : flip() = flip() xory

y <- read ti; y <- read i;
X <- samp flip(); X <- samp flip();
ret (x xor y) ret ((x xor y) xor y)

IPDL : Hello World!

axiom for exact equivalence :
1) yxory =0
2) xxor(0 =x

y <- read i;
X <- samp flip();
ret ((x xor y) xor y)

_ <- read i;
samp flip()

Ideal Protocol

Computational Security, Intuitively

* How to define the computational security P~ Q : [- 0 ?

* by Security Game b/w adversary & protocol.:

* for each round:
* adversary gives input
e protocol returns output

* adversary guessesP/Q

eIfP=0 :1 - 0, Pr(adv. wins) = 0.5, for any adv.
cIfP=(Q :1 - 0, Pr(adv. wins) = 0.5 + ¢, for polynomial adv.

Modeling Computational Adversaries

Definition 4.5 (A-Distinguisher). Given an interpretation 7, A (7, A, I, O)-distinguisher A is a
triple of probabilistic algorithms (Astep, Aout, Adecide) Where:
® Astep : 10,1} — {0, 1} X Query 7 5 ;o takes input a state s (encoded as a bitstring), and
returns a new state and a query;
® Aout : {0,1}* X (0 : 0) X (1+{0, I}HA(O)]]I) — {0, 1}* takes a state s, a channel o, an optional
value v for o, and returns a new state; and
® Adecide : {0,1}" — {0, 1} takes a state and returns a single bit.

Distinguishers and Interactions. Let 1 be an interpretation for 3. Then, given channel sets I, O
for channel context A, we define the set Query 7.ALO tO be:

Query 7 510 = {Input(i,0) | i € I,v € {0, 1}““””1}} U {Get(0),0 € O} U {Step}.

Algorithm A (PT):
s=¢€

For k rounds:
(3’, Q) — ﬂstep(s)

s:=¢s

// update state

If g = Input(i,0) :
P :=Plread i := ret (v)]
If g = Get(o) :
If (o := v) € P for some v :
s := Aout (s, 0,Some(v))
Else :

s = Aout (s, 0, None)

// give input to P
// get output from P

// output may or may not be available
// either way, update the state accordingly

P« n, where P |7 1 // evaluate P as much as possible

return Agecide ()

Fig. 9. Interaction of IPDL program A +
P : I — O with k-bounded (7, A, I,0)
distinguisher A.

Probabilistic Poly-time Adversary

Definition 4.6 (k-Bounded Distinguisher). A (I, A, I, O)-distinguisher is k-bounded when its
algorithms (Astep, Aouts Adecide) all run in at most k time steps.

Definition 4.8 (PPT Distinguishers). Let {7} be a fam-
ily of interpretations for X, indexed by natural numbers
A. Additionally, let {A),;,0,}, be a family of channel
contexts A, and channel sets for Ay. Then a PPT distin-
guisher for {A), I, 0,} is a family {A,}, such that A, is
a (1, Ay, I, 0y)-distinguisher, along with a polynomial p
such that A, is p(A)-bounded for all A.

Computational Security, Formally

Definition 4.11 (Approximate Equivalence). Let Ay v P : I, — Oy and Ay F Q) : [}, — O, be
two families of IPDL protocols with identical typing judgments. Then, we say that P, and Q, are
indistinguishable under PPT interpretation, written Z;; Ay £ Py =; Q; : [}, — O), when: |A,] is

bounded by a polynomial in A; and for any PPT family of program contexts {C; : (A} v [} —
0;) — (A} + I} — O))}, and for all PPT families of distinguishers {A; } for {A, I}, O} bounded
by p(-), there exists a negligible function ¢ such that

| Pr[AP (G (P2))] = Pr[ALY (C2(Q1))] < e(A).

Recall that a negligible function ¢ : N — Q is one that is
eventually smaller than the inverse of any polynomial: VK, IN,Vn > N, e(n) < ,%K

Akz}TPZQ:I—)O

STRICT

ArP A P10 ArPA" Q10

ArP= 0TS0 ki<ke Li<lh ArP P T 0
(k]) SUBSUME (k l) SYM
AFP:&AZ’Z Q:1—-0 ArPp~"" P:1—0
ArP = p T 0 ArP AP P10
TRANS
A b Py stemaxthl)) pop 0

0:0 —A, NFPRV QIO (A, FPy~3 Op:l1, — Oy} €T
Ay v 0% (P) =D 0%(0) - 0 (D) = 0*(0) AP~ 0 L o0,
2 FO7(P) = (Q):07(1) = 67(0) Py = Qi — 0

igluo ArP~* 0150

N INPUT-UNUSED
ArP~""Q:1U{i} -0

Recall : Universal Composability

< € < €

T=Ri+H{~R;+H; =---=Ri. + H. = Ri + H, = ldeal

e Using equational logic for = & =, we deduce ™ = Ideal .

* Note that each H; = H, is an axiom, assuming computational
Indistinguishability defined previously, holds

Recall : Universal Composability

< € < €

T=Ri+H{~R;+H; =---=Ri. + H. = Ri + H, = ldeal

* Using equational logic for = & =, we deduce ™ = Ideal .

* Note that each H; = H, is an axiom, assuming computational
Indistinguishability defined previously, holds

* BUT!
* What if axioms are used exponentially many times in the proof?
* Then the equational logic is no longer sound! (why?)

Judgment for Approximate Equivalence

ArP 2 P10

k

/a\

U
U
U

focus on how (k, I)' s are updated!
AI—ZTPZQ:I—)O

STRICT
ArP A P10 ArPA" Q10
ArP= 0TS0 ki<ke Li<lh ArP P T 0
(k]) SUBSUME (k l) SYM
AI—P%AZ’ZQ:I%O ArPp~"" P:1—0
ArP = p T 0 ArP AP P10
TRANS
A b Py stemaxthl)) pop 0
0:0 —A, NFPRV QIO (A, FPy~3 Op:l1, — Oy} €T
EMBED AXIOM
Az F 0*(P) =\ 6%(Q) - 0*(I) — 0*(0) Ar Py~ 0,00 — 0

igluo ArP~* 0150

N INPUT-UNUSED
ArP~""Q:1U{i} -0

Soundness of IPDL

THEOREM 4.17 (SOUNDNESS THEOREM FOR THE APPROXIMATE EQUALITY OF IPDL prOTOCOLS). Let

>, be an IPDL signature, and let T- and T~ be sound exact and approximate theories with respect to a
PPT interpretation {IA} Ifl— {AA FPy=),0Q):1) — O;L}, then 1,;A) E Py =, Oy : 1) — 0,.

= o kristinas / IPDL-Maude Q. Type(/]to search

<> Code (© Issues 1 Pull requests ® Actions @ Projects © Security |2 Insights

. IPDL-Maude Pubiic ® Watch 2
¥ main - ¥ 1Branch © Tags Q Gotofile t Add file ~ {?> Code ~
'.!.' mcodescu added the version of Maude that allows us to run coin toss 49d9552 - 20 hours ago ~ ¥Y) 173 Commits
M reuse file name last year
M doc report milestone 7 3 months ago
M b added the version of Maude that allows us to run coin toss 20 hours ago
M src updated archive 3 months ago
(9 LICENSE.txt updated to GNU License version 3 2 years ago

[README.md typo 10 months ago

= (ERHS= Q a &« ~

To: Mihai.Codescu@imar.ro Tue 3/12/2024 4:24 PM
Dear Mihai Codescu,

Hello, | am Byoungho Son, and | study things related to rewriting logic.

Recently, | found out your project IPDL-Maude on github,

and | took a look at the original paper from POPL 2023.

| was wondering, what was the motivation for using Maude while there is already a Cog implementation of IPDL?

Would there be any advantage of Maude over Coq?
I'd appreciate if you could enlighten me:)
Best,

Byoungho

= (ERHS= Q a &« ~

To: Mihai.Codescu@imar.ro Tue 3/12/2024 4:24 PM
Dear Mihai Codescu,
Hello, | am Byoungho Son, and | study things related to rewriting logic.

Recently, | found out your project IPDL-Maude on github,

andltog Mihai Codescu<mscodescu@gmail.com> L S &« ~
MC
I was wo To: 283 (EFH3T Wed 3/13/2024 3:58 AM
Cc: Kristina Sojakova <sojakova.kristina@gmail.com>
Would tF
Dear Byoungho,
I'd appre
thank you for your interest.
Best,

| have chosen Maude because of my background and previous experience with it, and because | found it appropriate for the task of implementing a term

Byoungh rewriting system. In retrospect, | think it was a good idea. First, it provides a more natural way of specifying the typing and equality rules of IPDL - this is a
subjective judgement from someone who isn't a type theorist, but we had this feedback from a cryptographer as well. Second, as you may have seen we are
relying heavily on the strategy language for Maude. This allows us to write shorter proofs than in Cog, and we plan to implement a concrete syntax that will hide
some Maude technicalities from the user, making the proofs even shorter. Finally, the proofs are not only shorter, but also faster. For a case study that took about
2000 lines of code and about 4 seconds in Cog, we have a Maude variant that takes about 160 lines of code and about 0.3 seconds. | know of a project that
moved from Maude to Haskell for performance issues, but our implementation runs pretty fast for case studies of the size that we have formalized so far.

If you have further questions, don't hesitate to contact me.

Best regards,
Mihai

	슬라이드 1: A Core Calculus for Equational Proofs of Cryptographic Protocols
	슬라이드 2: Literature
	슬라이드 3: Literature
	슬라이드 4: Literature
	슬라이드 5: Universal Composability
	슬라이드 6: Contribution
	슬라이드 7: IPDL : Basic Syntax
	슬라이드 8: IPDL : Hello World!
	슬라이드 9
	슬라이드 10: IPDL : Hello World!
	슬라이드 11: IPDL : Hello World!
	슬라이드 12: IPDL : Hello World!
	슬라이드 13: IPDL : Hello World!
	슬라이드 14: Computational Security, Intuitively
	슬라이드 15: Modeling Computational Adversaries
	슬라이드 16
	슬라이드 17: Probabilistic Poly-time Adversary
	슬라이드 18: Computational Security, Formally
	슬라이드 19
	슬라이드 20: Recall : Universal Composability
	슬라이드 21: Recall : Universal Composability
	슬라이드 22: Judgment for Approximate Equivalence
	슬라이드 23
	슬라이드 24: Soundness of IPDL
	슬라이드 25
	슬라이드 26
	슬라이드 27

