Model-Free Nonstationary Reinforcement Learning

: Near-Optimal Regret and Applications in Multiagent Reinforcement Learning and Inventory Control

Jihyeon Hyeong, Hyeyoon Kang, Byoungho Son*,

2025-12-09

(*presenter)

CONTENTS

1. Introduction

- 1. Problem
- 2. Example
- 3. Definition

2. Algorithm & Analysis

- 1. RestartQ-UCB (Hoeffiding)
- 2. RestartQ-UCB (Freedman)
- 3. Double RestartQ-UCB

3. Conclusion

- 1. Experiment
- 2. Concluding Remark

Problem

Stationary MDP

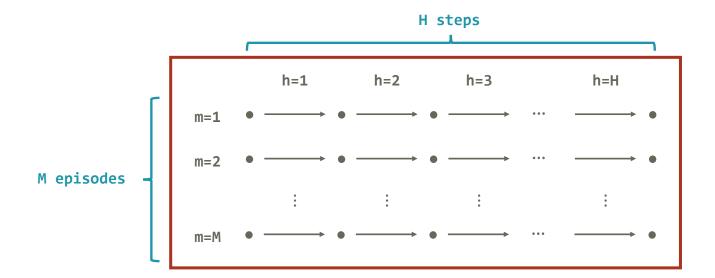
reward: r(s, a)

transition kernel: $P(s' \mid s, a)$

Nonstationary MDP

reward: $r_h^m(s, a)$

transition kernel: $P_h^m(s' \mid s, a)$



Problem

Stationary MDP

reward: r(s, a)

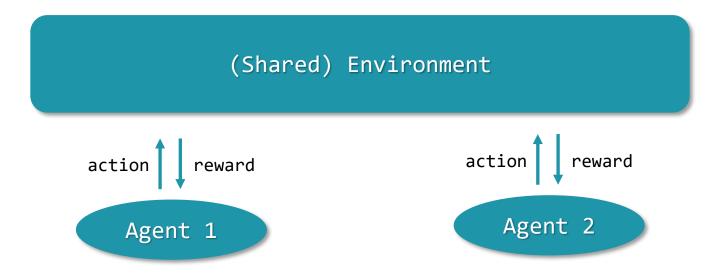
transition kernel: $P(s' \mid s, a)$

Nonstationary MDP

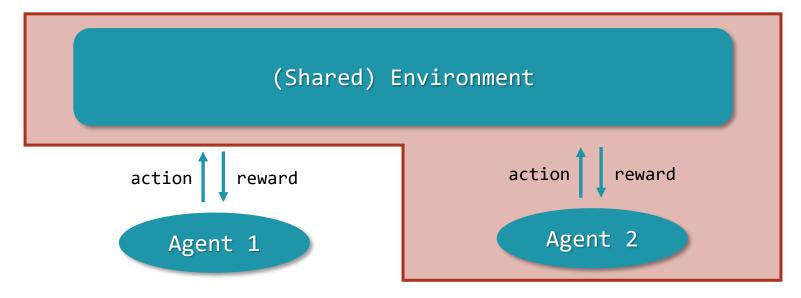
reward: $r_h^m(s, a)$

transition kernel: $P_h^m(s' \mid s, a)$

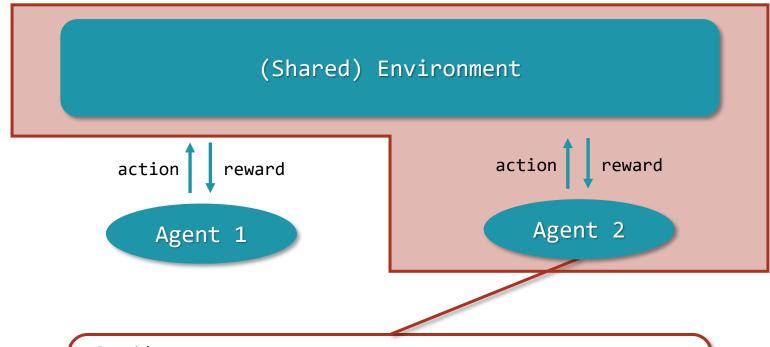
Problem: Can we design a near-optimal model-free learning algorithm over Nonstationary MDPs?



Environment from Agent 1's perspective



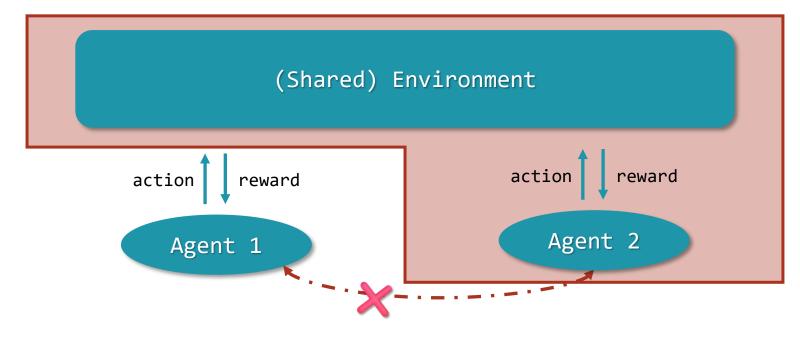
Environment from Agent 1's perspective ⇒ NONSTATIONARY!



Consider:

- Shared environment is stationary
- Agent 2 can take arbitrary actions (uncontrollable by Agent 1)
- As the game proceeds, Agent 2 learns and updates its policy across episodes

Environment from Agent 1's perspective



Decentralized: Agent 1 cannot observe the actions taken by Agent 2

- ⇒ Agent 1 has no access to the complete model of the environment
- ⇒ Agent 1 should learn the policy by simulation (Model-free Learning)

Definition – Dynamic Regret, Variation Budget

- Dynamic Regret: The measure of the algorithm's performance
 - Static Regret: Compare to best single policy for all episodes
 - Dynamic Regret: Compare to best policy for each episode

Measures the optimality of policy — appropriate for nonstationary environments

Definition – Dynamic Regret, Variation Budget

- Dynamic Regret: The measure of the algorithm's performance
 - Static Regret: Compare to best single policy for all episodes
 - Dynamic Regret: Compare to best policy for each episode

$$\mathbb{P}(\pi, M) \stackrel{\text{def}}{=} \sum_{m=1}^{M} (V_1^{m, *}(s_1^m) - V_1^{m, \pi}(s_1^m))$$

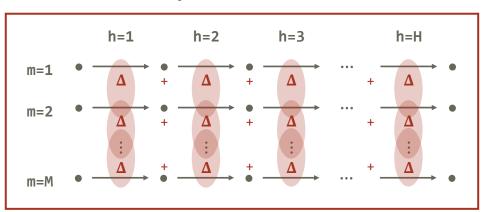
Measures the optimality of policy — appropriate for nonstationary environments

Variation Budget: The measure of the model's non-stationarity

$$\Delta = \Delta_r + \Delta_p$$

$$\Delta_r \stackrel{\text{def}}{=} \sum_{m=1}^{M-1} \sum_{h=1}^{H} \sup_{s,a} |r_h^m(s,a) - r_h^{m+1}(s,a)|$$

$$\Delta_r \stackrel{\text{def}}{=} \sum_{m=1}^{M-1} \sum_{h=1}^{H} \sup_{s,a} |P_h^m(\cdot|s,a) - P_h^{m+1}(\cdot|s,a)||_1$$



RestartQ-UCB

A familiar Q-Learning algorithm...

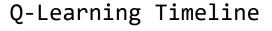
```
1 for epoch d \leftarrow 1 to D do
         Initialize: V_h(s) \leftarrow H - h + 1, Q_h(s,a) \leftarrow H - h + 1, N_h(s,a) \leftarrow 0, \check{N}_h(s,a) \leftarrow 0,
           \check{r}_h(s,a) \leftarrow 0, \check{v}_h(s,a) \leftarrow 0, \text{ for all } (s,a,h) \in \mathcal{S} \times \mathcal{A} \times [H];
         for episode k \leftarrow (d-1)K + 1 to min\{dK, M\} do
                                                                                                                                                                                                   for each episode...
               observe s_1^k;
                for step h \leftarrow 1 to H do
                      Take action a_h^k \leftarrow \arg \max_a Q_h(s_h^k, a), receive R_h^k(s_h^k, a_h^k), and observe s_{h+1}^k;
                                                                                                                                                                                                   sample (s,a,r,s')
                      \check{r}_h(s_h^k, a_h^k) \leftarrow \check{r}_h(s_h^k, a_h^k) + R_h^k(s_h^k, a_h^k), \check{v}_h(s_h^k, a_h^k) \leftarrow \check{v}_h(s_h^k, a_h^k) + V_{h+1}(s_{h+1}^k);
                      N_h(s_h^k, a_h^k) \leftarrow N_h(s_h^k, a_h^k) + 1, \check{N}_h(s_h^k, a_h^k) \leftarrow \check{N}_h(s_h^k, a_h^k) + 1;
                      if N_h(s_h^k, a_h^k) \in \mathcal{L} then
                            #Reaching the end of the stage
                            b_h^k \leftarrow \sqrt{\frac{H^2}{\check{N}_h(s_h^k, a_h^k)}\iota} + \sqrt{\frac{1}{\check{N}_h(s_h^k, a_h^k)}\iota}, \ b_\Delta \leftarrow \Delta_r^{(d)} + H\Delta_p^{(d)};
                            Q_h(s_h^k, a_h^k) \leftarrow \min \Big\{ Q_h(s_h^k, a_h^k), \frac{\check{r}_h(s_h^k, a_h^k)}{\check{N}_h(s_h^k, a_h^k)} + \frac{\check{v}_h(s_h^k, a_h^k)}{\check{N}_h(s_h^k, a_h^k)} + b_h^k + 2b_\Delta \Big\};
                                                                                                                                                                                                          update Q & V
                             V_h(s_h^k) \leftarrow \max_a Q_h(s_h^k, a);
                             \check{N}_h(s_h^k, a_h^k) \leftarrow 0, \check{r}_h(s_h^k, a_h^k) \leftarrow 0, \check{v}_h(s_h^k, a_h^k) \leftarrow 0;
```

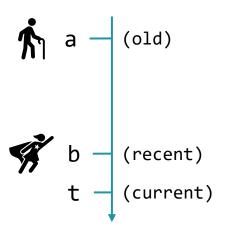
RestartQ-UCB

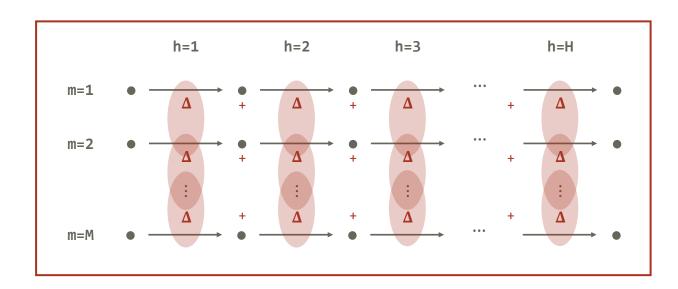
A familiar Q-Learning algorithm... but over a nonstationary environment!

```
1 for epoch d \leftarrow 1 to D do
         Initialize: V_h(s) \leftarrow H - h + 1, Q_h(s, a) \leftarrow H - h + 1, N_h(s, a) \leftarrow 0, \check{N}_h(s, a) \leftarrow 0,
                                                                                                                                                                                                       Periodically
          \check{r}_h(s,a) \leftarrow 0, \check{v}_h(s,a) \leftarrow 0, \text{ for all } (s,a,h) \in \mathcal{S} \times \mathcal{A} \times [H];
                                                                                                                                                                                             forget everything
         for episode k \leftarrow (d-1)K + 1 to \min\{dK, M\} do
               observe s_1^k;
                                                                                                                                                                                                  (RestartO-UCB)
               for step h \leftarrow 1 to H do
                      Take action a_h^k \leftarrow \arg\max_a Q_h(s_h^k, a), receive R_h^k(s_h^k, a_h^k), and observe s_{h+1}^k;
                     \check{r}_h(s_h^k, a_h^k) \leftarrow \check{r}_h(s_h^k, a_h^k) + R_h^k(s_h^k, a_h^k), \check{v}_h(s_h^k, a_h^k) \leftarrow \check{v}_h(s_h^k, a_h^k) + V_{h+1}(s_{h+1}^k)
                     N_h(s_h^k, a_h^k) \leftarrow N_h(s_h^k, a_h^k) + 1, \check{N}_h(s_h^k, a_h^k) \leftarrow \check{N}_h(s_h^k, a_h^k) + 1;
                     if N_h(s_h^k, a_h^k) \in \mathcal{L} then
                           #Reaching the end of the stage
                           b_h^k \leftarrow \sqrt{\frac{H^2}{\check{N}_h(s_h^k, a_h^k)}\iota} + \sqrt{\frac{1}{\check{N}_h(s_h^k, a_h^k)}\iota}, b_\Delta \leftarrow \Delta_r^{(d)} + H\Delta_p^{(d)};
                                                                                                                                                                                                         Compute UCB
                                                                                                                                                                                                      bonus terms
                           Q_h(s_h^k, a_h^k) \leftarrow \min \left\{ Q_h(s_h^k, a_h^k), \frac{\check{r}_h(s_h^k, a_h^k)}{\check{N}_h(s_h^k, a_h^k)} + \frac{\check{v}_h(s_h^k, a_h^k)}{\check{N}_h(s_h^k, a_h^k)} + b_h^k + 2b_\Delta \right\},
                                                                                                                                                                                                   (RestartQ-<mark>UCB</mark>)
                            V_h(s_h^k) \leftarrow \max_a Q_h(s_h^k, a);
                            \check{N}_h(s_h^k, a_h^k) \leftarrow 0, \check{r}_h(s_h^k, a_h^k) \leftarrow 0, \check{v}_h(s_h^k, a_h^k) \leftarrow 0;
```

• ① Why periodically forget everything to handle nonstationarity?



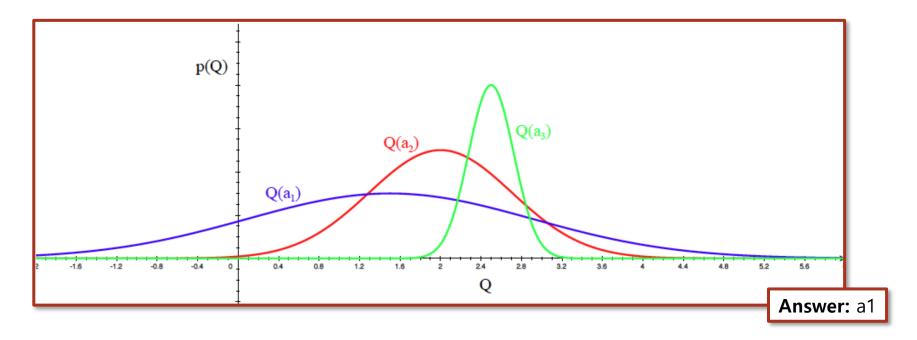




- Note that, our env is as much nonstationary as variation budget Δ
- Env at t is similar to env at b, but distant to env a
- This means, at timepoint t, Q_b is useful but Q_a is outdated
- So we better forget Q_a when learning Q_t !

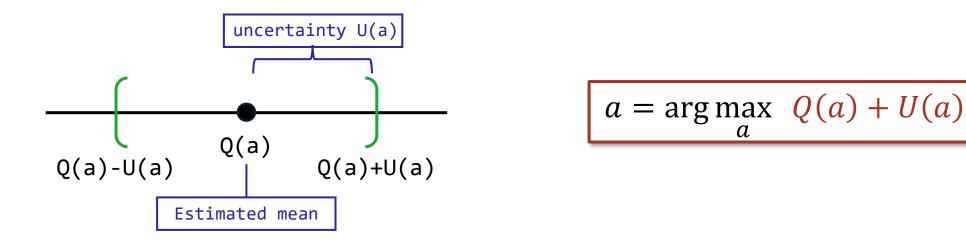
② What are UCB(Upper Confidence Bound) terms for?

Question: Suppose we want to estimate Q-values for actions a_1 , a_2 , a_3 as below. which action should we choose first for exploration? (width of distrib. = uncertainty)



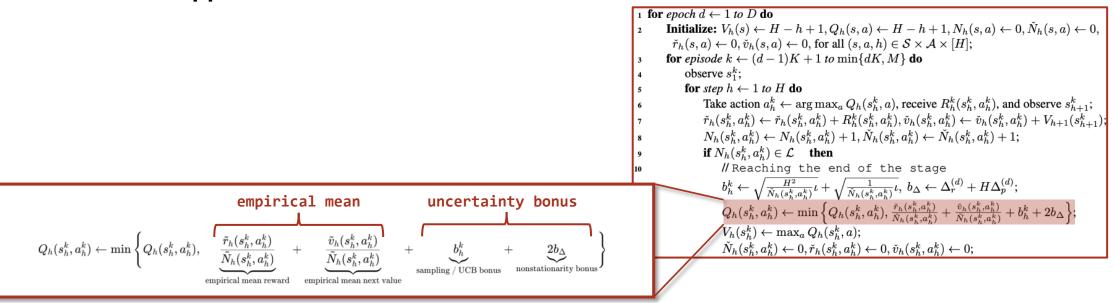
Principle 1: "The more uncertain we are about Q(a), the more important it is to explore the action"

- ② What are UCB(Upper Confidence Bound) terms for?
 - UCB Algorithm: "Pick the action according to the upper bound of the confidence interval

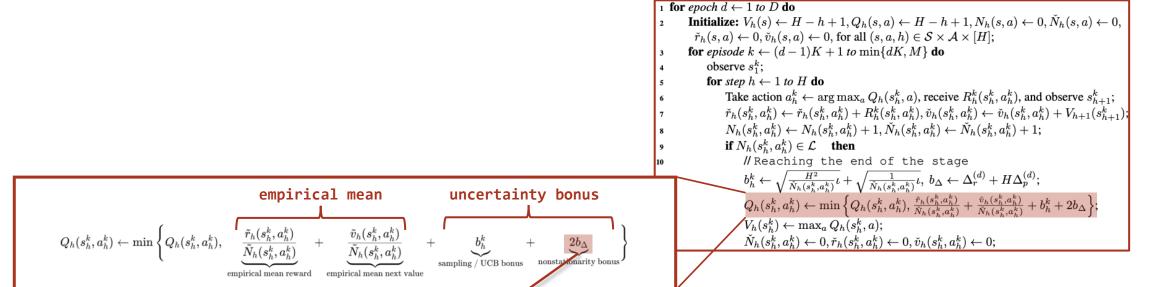


• Principle2: "Optimism in the face of uncertainty"

② What are UCB(Upper Confidence Bound) terms for?



② What are UCB(Upper Confidence Bound) terms for?



$$b_{\Delta} \leftarrow \Delta_r^{(d)} + H \Delta_p^{(d)}$$

Nonstationary bonus:

the bigger delta

- = the more nonstationary the model is
- = the more uncertain the model is
- = the more important it is to explore

Theorem 1 (Hoeffding). For $T = \Omega(SA\Delta H^2)$, and for any $\delta \in (0,1)$, with probability at least $1-\delta$, the dynamic regret of RestartQ-UCB with Hoeffding bonuses is bounded by $\tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}H^{\frac{5}{3}}T^{\frac{2}{3}})$, where $\tilde{O}(\cdot)$ hides polylogarithmic factors of S, A, T, and $1/\delta$.

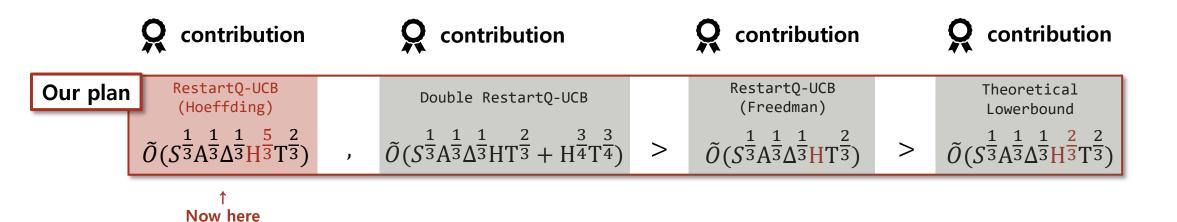
S: number of states

A: number of actions

 Δ : variation budget

H : number of steps per episode

T: total number of timesteps



Mao, W., Zhang, K., Zhu, R., Simchi-Levi, D., & Başar, T. (2025). Model-Free Nonstationary Reinforcement Learning: Near-Optimal Regret and Applications in Multiagent Reinforcement Learning and Inventory Control. *Management Science*, 71(2), 1564-1580.

RestartQ-UCB (Freedman)

Hoeffding type UCB is replaced by a tighter **Freedman type UCB**, which is more involved..

```
Algorithm 1: RestartQ-UCB (Hoeffding/Freedman
1 for epoch d \leftarrow 1 to D do
           Initialize: V_h(s) \leftarrow H - h + 1, Q_h(s,a) \leftarrow H - h + 1, N_h(s,a) \leftarrow 0, \check{N}_h(s,a) \leftarrow 0, \check{r}_h(s,a) \leftarrow 0
             0, \check{v}_h(s,a) \leftarrow 0, \check{\mu}_h(s,a) \leftarrow 0, \check{\sigma}_h(s,a) \leftarrow 0, \mu_h^{\mathrm{ref}}(s,a) \leftarrow 0, \sigma_h^{\mathrm{ref}}(s,a) \leftarrow 0, V_h^{\mathrm{ref}}(s) \leftarrow H, \text{ for all }
             (s, a, h) \in \mathcal{S} \times \mathcal{A} \times [H];
            for episode k \leftarrow (d-1)K+1 to min\{dK, M\} do
                    observe s_1:
                    for step h \leftarrow 1 to H do
                           Take action a_h \leftarrow \arg \max_a Q_h(s_h, a), receive R_h(s_h, a_h), and observe s_{h+1};
                           \check{r}_h(s_h, a_h) \leftarrow \check{r}_h(s_h, a_h) + R_h(s_h, a_h), \check{v}_h(s_h, a_h) \leftarrow \check{v}_h(s_h, a_h) + V_{h+1}(s_{h+1});
                           \check{\mu}(s_h, a_h) \leftarrow \check{\mu}(s_h, a_h) + V_{h+1}(s_{h+1}) - V_{h+1}^{\text{ref}}(s_{h+1});
                           \check{\sigma}(s_h, a_h) \leftarrow \check{\sigma}(s_h, a_h) + (V_{h+1}(s_{h+1}) - V_{h+1}^{\text{ref}}(s_{h+1}))^2
                           \mu^{\text{ref}}(s_h, a_h) \leftarrow \mu^{\text{ref}}(s_h, a_h) + V_{h+1}^{\text{ref}}(s_{h+1}), \sigma^{\text{ref}}(s_h, a_h) \leftarrow \sigma^{\text{ref}}(s_h, a_h) + (V_{h+1}^{\text{ref}}(s_{h+1}))^2;
                           n \stackrel{\text{def}}{=} N_h(s_h, a_h) \leftarrow N_h(s_h, a_h) + 1, \check{n} \stackrel{\text{def}}{=} \check{N}_h(s_h, a_h) \leftarrow \check{N}_h(s_h, a_h) + 1;
                           if N_h(s_h, a_h) \in \mathcal{L} then
                                  // Reaching the end of the stage
                                  b_h \leftarrow \sqrt{\frac{H^2}{\tilde{s}}} \iota + \sqrt{\frac{1}{\tilde{s}}} \iota, \ b_\Delta \leftarrow \Delta_r^{(d)} + H \Delta_p^{(d)};
                                   \underline{b}_h \leftarrow 2\sqrt{\frac{\sigma^{\mathrm{ref}}/n - (\mu^{\mathrm{ref}}/n)^2}{n}}\iota + 2\sqrt{\frac{\check{\sigma}/\check{n} - (\check{\mu}/\check{n})^2}{\check{n}}}\iota + 5(\frac{H\iota}{n} + \frac{H\iota}{\check{n}} + \frac{H\iota^{3/4}}{\tilde{n}} + \frac{H\iota^{3/4}}{\tilde{n}^{3/4}} + \frac{H\iota^{3/4}}{\tilde{n}^{3/4}})
                                  \overline{Q_h(s_h, a_h)} \leftarrow \min \left\{ \frac{\check{r}}{\check{a}} + \frac{\check{v}}{\check{a}} + b_h + 2b_\Delta, \frac{\check{r}}{\check{a}} + \frac{\mu^{\text{ref}}}{\check{a}} + \frac{\check{\mu}}{\check{a}} + 2\underline{b}_h + 4b_\Delta, Q_h(s_h, a_h) \right\};
                                                                                                                                                                                                          (*)
                                   V_h(s_h) \leftarrow \max_a Q_h(s_h, a);
                                  \check{N}_h(s_h, a_h) \leftarrow 0, \check{r}_h(s_h, a_h) \leftarrow 0, \check{v}_h(s_h, a_h) \leftarrow 0, \check{\mu}_h(s_h, a_h) \leftarrow 0, \check{\sigma}_h(s_h, a_h) \leftarrow 0;
                           if \sum_{a} N_h(s_h, a) = N_0 then // Learn the reference value
                                  V_h^{\text{ref}}(s_h) \leftarrow V_h(s_h);
```

RestartQ-UCB (Freedman)

Theorem 3 (Freedman, No Local Budgets). For T greater than some polynomial of S, A, Δ , and H, and for any $\delta \in (0,1)$, with probability at least $1-\delta$, the dynamic regret of RestartQ-UCB with Freedman bonuses (Algorithm 1 including the light-face parts) is upper bounded by $\tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}HT^{\frac{2}{3}})$, where $\tilde{O}(\cdot)$ hides polylogarithmic factors of S, A, T, and $1/\delta$.

RestartQ-UCB (Hoeffding) Double RestartQ-UCB $\tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}H^{\frac{5}{3}}T^{\frac{2}{3}}) , \quad \tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}HT^{\frac{2}{3}}+H^{\frac{3}{4}}T^{\frac{3}{4}})$

Hoeffding type UCB is replaced by a tighter Freedman type UCB, Algorithm 1: RestartQ-UCB (Hoeffding/Freedman which is more involved.. 1 for epoch $d \leftarrow 1$ to D do **Initialize:** $V_h(s) \leftarrow H - h + 1, Q_h(s, a) \leftarrow H - h + 1, N_h(s, a) \leftarrow 0, \check{N}_h(s, a) \leftarrow 0, \check{r}_h(s, a) \leftarrow 0$ $0, \check{v}_h(s, a) \leftarrow 0, \check{\mu}_h(s, a) \leftarrow 0, \check{\sigma}_h(s, a) \leftarrow 0, \mu_h^{\text{ref}}(s, a) \leftarrow 0, \sigma_h^{\text{ref}}(s, a) \leftarrow 0, V_h^{\text{ref}}(s) \leftarrow H, \text{ for all }$ $(s, a, h) \in \mathcal{S} \times \mathcal{A} \times [H];$ for episode $k \leftarrow (d-1)K+1$ to min $\{dK, M\}$ do observe s_1 : for step $h \leftarrow 1$ to H do Take action $a_h \leftarrow \arg \max_a Q_h(s_h, a)$, receive $R_h(s_h, a_h)$, and observe s_{h+1} ; $\check{r}_h(s_h, a_h) \leftarrow \check{r}_h(s_h, a_h) + R_h(s_h, a_h), \check{v}_h(s_h, a_h) \leftarrow \check{v}_h(s_h, a_h) + V_{h+1}(s_{h+1});$ $\check{\mu}(s_h, a_h) \leftarrow \check{\mu}(s_h, a_h) + V_{h+1}(s_{h+1}) - V_{h+1}^{\text{ref}}(s_{h+1});$ $\check{\sigma}(s_h, a_h) \leftarrow \check{\sigma}(s_h, a_h) + (V_{h+1}(s_{h+1}) - V_{h+1}^{\text{ref}}(s_{h+1}))^2;$ $\mu^{\text{ref}}(s_h, a_h) \leftarrow \mu^{\text{ref}}(s_h, a_h) + V_{h+1}^{\text{ref}}(s_{h+1}), \sigma^{\text{ref}}(s_h, a_h) \leftarrow \sigma^{\text{ref}}(s_h, a_h) + (V_{h+1}^{\text{ref}}(s_{h+1}))^2;$ $n \stackrel{\text{def}}{=} N_h(s_h, a_h) \leftarrow N_h(s_h, a_h) + 1, \check{n} \stackrel{\text{def}}{=} \check{N}_h(s_h, a_h) \leftarrow \check{N}_h(s_h, a_h) + 1;$ if $N_h(s_h, a_h) \in \mathcal{L}$ then // Reaching the end of the stage $b_h \leftarrow \sqrt{\frac{H^2}{\tilde{s}}}\iota + \sqrt{\frac{1}{\tilde{n}}}\iota, \ b_\Delta \leftarrow \Delta_r^{(d)} + H\Delta_p^{(d)};$ $\underline{b}_{h} \leftarrow 2\sqrt{\frac{\sigma^{\text{ref}}/n - (\mu^{\text{ref}}/n)^{2}}{\pi^{2}}\iota} + 2\sqrt{\frac{\check{\sigma}/\check{n} - (\check{\mu}/\check{n})^{2}}{\tilde{n}}\iota} + 5(\frac{H\iota}{\pi} + \frac{H\iota}{\tilde{n}} + \frac{H\iota}{3/4} + \frac{H\iota^{3/4}}{3/4} + \frac{H\iota^{3/4}}{3/4}) + \sqrt{\frac{1}{\pi}\iota};$ $Q_h(s_h, a_h) \leftarrow \min \left\{ \frac{\tilde{r}}{\tilde{c}} + \frac{\tilde{v}}{\tilde{c}} + b_h + 2b_\Delta, \frac{\tilde{r}}{\tilde{c}} + \frac{\mu^{\text{ref}}}{r} + \frac{\tilde{\mu}}{\tilde{c}} + 2\underline{b}_h + 4b_\Delta, Q_h(s_h, a_h) \right\};$ $V_h(s_h) \leftarrow \max_a Q_h(s_h, a);$ RestartQ-UCB Theoretical (Freedman) Lowerbound $O(S^{\overline{3}}A^{\overline{3}}\Delta^{\overline{3}}HT^{\overline{3}})$ $O(S\overline{3}A\overline{3}\Delta\overline{3}H\overline{3}T\overline{3})$

Near-optimal!

RestartQ-UCB (Freedman)

Caveat: For optimality, $D = S^{-1/3} \cdot A^{-1/3} \cdot \Delta^{2/3} \cdot H^{-2/3} \cdot T^{1/3}$ i.e. restart scheduling requires prior knowledge of Δ

Can we get rid of this?

```
Algorithm 1: RestartQ-UCB (Hoeffding/Freedman)
1 for epoch d \leftarrow 1 \not D do
           Initialize: V_h(s) \leftarrow H - h + 1, Q_h(s,a) \leftarrow H - h + 1, N_h(s,a) \leftarrow 0, \check{N}_h(s,a) \leftarrow 0, \check{r}_h(s,a) \leftarrow 0
              (v, v_h(s, a) \leftarrow 0, \check{\mu}_h(s, a) \leftarrow 0, \check{\sigma}_h(s, a) \leftarrow 0, \mu_h^{\text{ref}}(s, a) \leftarrow 0, \sigma_h^{\text{ref}}(s, a) \leftarrow 0, V_h^{\text{ref}}(s) \leftarrow H, \text{ for all } s \leftarrow 0
              (s, a, h) \in \mathcal{S} \times \mathcal{A} \times [H];
            for episode k \leftarrow (d-1)K+1 to min\{dK, M\} do
                    observe s_1:
                    for step h \leftarrow 1 to H do
                           Take action a_h \leftarrow \arg\max_a Q_h(s_h, a), receive R_h(s_h, a_h), and observe s_{h+1};
                           \check{r}_h(s_h, a_h) \leftarrow \check{r}_h(s_h, a_h) + R_h(s_h, a_h), \check{v}_h(s_h, a_h) \leftarrow \check{v}_h(s_h, a_h) + V_{h+1}(s_{h+1});
                           \check{\mu}(s_h, a_h) \leftarrow \check{\mu}(s_h, a_h) + V_{h+1}(s_{h+1}) - V_{h+1}^{\text{ref}}(s_{h+1});
                           \check{\sigma}(s_h, a_h) \leftarrow \check{\sigma}(s_h, a_h) + (V_{h+1}(s_{h+1}) - V_{h+1}^{\text{ref}}(s_{h+1}))^2;
                           \mu^{\text{ref}}(s_h, a_h) \leftarrow \mu^{\text{ref}}(s_h, a_h) + V_{h+1}^{\text{ref}}(s_{h+1}), \sigma^{\text{ref}}(s_h, a_h) \leftarrow \sigma^{\text{ref}}(s_h, a_h) + (V_{h+1}^{\text{ref}}(s_{h+1}))^2;
                           n \stackrel{\text{def}}{=} N_h(s_h, a_h) \leftarrow N_h(s_h, a_h) + 1, \check{n} \stackrel{\text{def}}{=} \check{N}_h(s_h, a_h) \leftarrow \check{N}_h(s_h, a_h) + 1;
                           if N_h(s_h, a_h) \in \mathcal{L} then
                                  // Reaching the end of the stage
                                  b_h \leftarrow \sqrt{\frac{H^2}{\tilde{n}}}\iota + \sqrt{\frac{1}{\tilde{n}}}\iota, \ b_\Delta \leftarrow \Delta_r^{(d)} + H\Delta_p^{(d)};
                                  \underline{b}_{h} \leftarrow 2\sqrt{\frac{\sigma^{\text{ref}}/n - (\mu^{\text{ref}}/n)^{2}}{\pi^{2}}\iota} + 2\sqrt{\frac{\check{\sigma}/\check{n} - (\check{\mu}/\check{n})^{2}}{\tilde{n}}\iota} + 5(\frac{H\iota}{\pi} + \frac{H\iota}{\tilde{n}} + \frac{H\iota}{3/4} + \frac{H\iota^{3/4}}{3/4} + \frac{H\iota^{3/4}}{3/4}) + \sqrt{\frac{1}{\pi}\iota};
                                  Q_h(s_h, a_h) \leftarrow \min \left\{ \frac{\tilde{r}}{\tilde{c}} + \frac{\tilde{v}}{\tilde{c}} + b_h + 2b_\Delta, \frac{\tilde{r}}{\tilde{c}} + \frac{\mu^{\text{ref}}}{\tilde{c}} + \frac{\tilde{\mu}}{\tilde{c}} + 2\underline{b}_h + 4b_\Delta, Q_h(s_h, a_h) \right\};
                                   V_h(s_h) \leftarrow \max_a Q_h(s_h, a);
                                   \check{N}_h(s_h, a_h) \leftarrow 0, \check{r}_h(s_h, a_h) \leftarrow 0, \check{v}_h(s_h, a_h) \leftarrow 0, \check{\mu}_h(s_h, a_h) \leftarrow 0, \check{\sigma}_h(s_h, a_h) \leftarrow 0;
                           if \sum_{a} N_h(s_h, a) = N_0 then // Learn the reference value
                                    V_h^{\text{ref}}(s_h) \leftarrow V_h(s_h);
```

Double-Restart Q-UCB

Here, D is "learned" in an online manner, rather than "given" as a parameter

Multi-Armed Bandit Problem

Algorithm 2 (Double-Restart Q-UCB)

- 1 **Input:** Parameters W, \mathcal{J} , α , and γ as given in Equations (2) and (3).
- 2 **Initialize:** Weights of the bandit arms $s_1(j) = \exp\left(\frac{\alpha \gamma}{3} \sqrt{\frac{\lceil M/W \rceil}{J+1}}\right)$ for $j = 0, 1, ..., \lceil \ln W \rceil$.
- 3 **for** *phase* $i \leftarrow 1$ *to* $\lceil \frac{M}{W} \rceil$ **do**

$$4 \quad p_{i}(j) \leftarrow (1 - \gamma) \frac{s_{i}(j)}{\sum_{j'=0}^{J} s_{i}(j')} + \frac{\gamma}{J+1}, \ \forall j = 0, 1, \dots, J;$$

- 5 Draw an arm A_i from $\{0, ..., J\}$ randomly according to the probabilities $p_i(0), ..., p_i(J)$;
- 6 Set the estimated number of epochs $D_i \leftarrow \begin{vmatrix} TW^T \\ SAH^2W \end{vmatrix}$
- 7 Run a new instance of Algorithm 1 (including lightface parts) for W episodes with parameter value $D \leftarrow D_i$;
- 8 Observe the cumulative reward R_i from the last W episodes;
- 9 **for** $arm j \leftarrow 0, 1, ..., J$ **do**
- 10 $\hat{R}_i(j) \leftarrow R_i \mathbb{I}\{j = A_i\}/(WHp_i(j));$
- 11 $s_{i+1}(j) \leftarrow s_i(j) \exp\left(\frac{\gamma}{3(J+1)} \left(\hat{R}_i(j) + \frac{\alpha}{p_i(j)\sqrt{(J+1)\lceil M/W \rceil}}\right)\right);$

Double-Restart Q-UCB

Theorem 4 (Freedman, No Total Budgets). For T greater than some polynomial of S, A, Δ , and H, and for any $\delta \in (0,1)$, with probability at least $1-\delta$, the dynamic regret of Double-Restart Q-UCB with Freedman bonuses and no prior knowledge of the total variation budget Δ is bounded by $\tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}HT^{\frac{2}{3}}+H^{\frac{3}{4}}T^{\frac{3}{4}})$, where $\tilde{O}(\cdot)$ hides polylogarithmic factors.

Compared to RestartQ-UCB (Freedman),

- more overhead for learning D
- but more robust to unknown, irregular, and abrupt environment changes

- 1 **Input:** Parameters W, \mathcal{J} , α , and γ as given in Equations (2) and (3).
- 2 **Initialize:** Weights of the bandit arms $s_1(j) = \exp\left(\frac{\alpha\gamma}{3}\sqrt{\frac{\lceil M/W \rceil}{j+1}}\right)$ for $j = 0, 1, ..., \lceil \ln W \rceil$.
- 3 **for** *phase* $i \leftarrow 1$ *to* $\lceil \frac{M}{W} \rceil$ **do**
- $4 p_i(j) \leftarrow (1-\gamma) \frac{s_i(j)}{\sum_{j'=0}^J s_i(j')} + \frac{\gamma}{J+1}, \ \forall j=0,1,\ldots,J;$
- 5 Draw an arm A_i from $\{0, ..., J\}$ randomly according to the probabilities $p_i(0), ..., p_i(J)$;
- Set the estimated number of epochs $D_i \leftarrow \left\lfloor \frac{TW^{\frac{3i}{i}}}{SAH^2W} \right\rfloor$;
- 7 Run a new instance of Algorithm 1 (including lightface parts) for W episodes with parameter value $D \leftarrow D_i$;
- 8 Observe the cumulative reward R_i from the last W episodes;
- 9 **for** $arm j \leftarrow 0, 1, ..., J$ **do**

RestartQ-UCB (Hoeffding)
$$\tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}T^{\frac{1}{3}}) \qquad \tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}HT^{\frac{2}{3}} + H^{\frac{3}{4}}T^{\frac{3}{4}}) \qquad \tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}HT^{\frac{2}{3}}) \qquad \tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}HT^{\frac{1}{3}}) \qquad \tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}HT^{\frac{1}{3}})$$

Still near-optimal!

Experiment

Compared Algorithms

		Restart?	Exploration	Framework	Time Complexity
	RestartQ-UCB	0	UCB	Q-Learning	$\tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}HT^{\frac{2}{3}})$
	Double-Restart Q-UCB	Ο	UCB	Q-Learning	$\tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}HT^{\frac{2}{3}} + H^{\frac{3}{4}}T^{\frac{3}{4}})$
	LSVI-UCB-Restart	0	UCB	Least-Squares Value Iteration	$\tilde{O}(S^{\frac{4}{3}}A^{\frac{4}{3}}\Delta^{\frac{1}{3}}H^{\frac{4}{3}}T^{\frac{2}{3}})$ (SOTA)
	Q-Learning UCB	X	UCB	Q-Learning	-
	Epsilon-Greedy	0	ϵ -greedy	Q-Learning	-

Baseline

Experiment

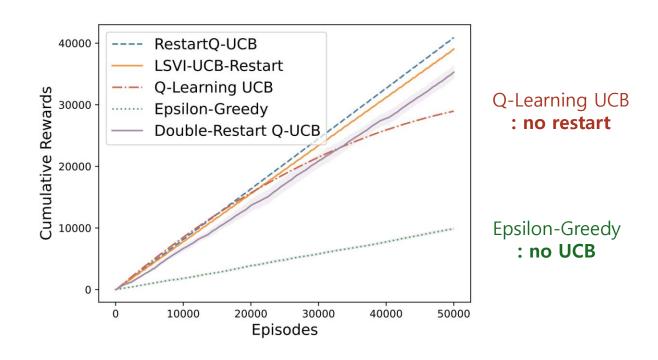
Compared Algorithms

Exploration Time Complexity Restart? Framework $\tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}HT^{\frac{2}{3}})$ **RestartQ-UCB UCB** Q-Learning 0 $\tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}HT^{\frac{2}{3}} + H^{\frac{3}{4}}T^{\frac{3}{4}})$ **Double-Restart Q-UCB** 0 **UCB** Q-Learning $\tilde{O}(S^{\frac{4}{3}}A^{\frac{4}{3}}\Delta^{\frac{1}{3}}H^{\frac{4}{3}}T^{\frac{2}{3}})$ (SOTA) LSVI-UCB-Restart 0 **UCB** Least-Squares Value Iteration Q-Learning UCB Χ **UCB** Q-Learning **Epsilon-Greedy** 0 ϵ -greedy Q-Learning

Baseline

Simulation

- Benchmark
 - Bidirectional Diabolical Combination Lock
 - particularly difficult for exploration



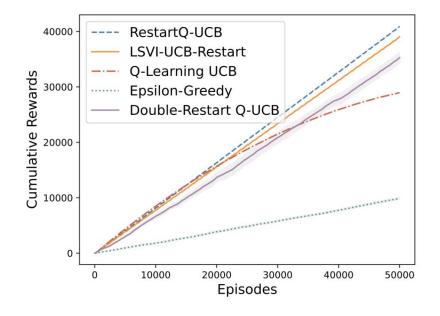
Experiment

Compared Algorithms

Exploration Framework Time Complexity Restart? $\tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}HT^{\frac{2}{3}})$ **RestartQ-UCB UCB** Q-Learning 0 $\tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}HT^{\frac{2}{3}} + H^{\frac{3}{4}}T^{\frac{3}{4}})$ **Double-Restart Q-UCB** 0 UCB Q-Learning $\tilde{O}(S^{\frac{4}{3}}A^{\frac{4}{3}}\Delta^{\frac{1}{3}}H^{\frac{4}{3}}T^{\frac{2}{3}})$ (SOTA) LSVI-UCB-Restart 0 **UCB** Least-Squares Value Iteration Q-Learning UCB Χ **UCB** Q-Learning **Epsilon-Greedy** 0 ϵ -greedy Q-Learning

Baseline

Simulation



Algorithm	Time per episode	
RestartQ-UCB	$0.102~\mathrm{ms}$	only little
Double-Restart Q-UCB	$0.105~\mathrm{ms}$	overhead!
LSVI-UCB-Restart	57.65 ms —	very slow!
Q-Learning UCB	$0.098~\mathrm{ms}$	
Epsilon-Greedy	$0.123~\mathrm{ms}$	

- Proposed two model-free learning algorithms for nonstationary MDPs
 - RestartQ-UCB : $\tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}HT^{\frac{2}{3}})$
 - Double-Restart Q-UCB : $\tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}HT^{\frac{2}{3}} + H^{\frac{3}{4}}T^{\frac{3}{4}})$

- Proposed two model-free learning algorithms for nonstationary MDPs
 - RestartQ-UCB : $\tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}HT^{\frac{2}{3}})$
 - Double-Restart Q-UCB : $\tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}HT^{\frac{2}{3}} + H^{\frac{3}{4}}T^{\frac{3}{4}})$
- And showed that they are near-optimal
 - w.r.t. the information-theoretical lowerbound $\tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}H^{\frac{2}{3}}T^{\frac{2}{3}})$

Proposed two model-free learning algorithms for nonstationary MDPs

- RestartQ-UCB : $\tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}HT^{\frac{2}{3}})$
- Double-Restart Q-UCB : $\tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}HT^{\frac{2}{3}} + H^{\frac{3}{4}}T^{\frac{3}{4}})$

And showed that they are near-optimal

• w.r.t. the information-theoretical lowerbound $\tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}H^{\frac{2}{3}}T^{\frac{2}{3}})$

With supporting empirical results

- competitive in both rewards & time
- justification of Restart & UCB in their design

Proposed two model-free learning algorithms for nonstationary MDPs

- RestartQ-UCB : $\tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}HT^{\frac{2}{3}})$
- □ Double-Restart Q-UCB : $\tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}HT^{\frac{2}{3}} + H^{\frac{3}{4}}T^{\frac{3}{4}})$

And showed that they are near-optimal

• w.r.t. the information-theoretical lowerbound $\tilde{O}(S^{\frac{1}{3}}A^{\frac{1}{3}}\Delta^{\frac{1}{3}}H^{\frac{2}{3}}T^{\frac{2}{3}})$

With supporting empirical results

- competitive in both rewards & time
- justification of Restart & UCB in their design

Future Direction

• Close the remaining $\tilde{O}(H^{\frac{1}{3}})$ gap

Thank You!