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The PROMELA/SPIN tandem

▪ Widely used for modeling & verifying concurrent/distributed systems
◦ PROMELA is the input modeling language

◦ SPIN is the model checker

◦ workflow :
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◦ workflow :
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PROMELA code

▪ Strength :
◦ SPIN : fully automatic & efficient

◦ PROMELA : intuitive high-level modeling language

◦ many application domains (e.g., crypto protocols, linux system calls, etc.)

◦ received ACM Software System Award 2001

automaton SPIN
parse input



Limitations of PROMELA/SPIN

▪ SPIN only supports explicit model checking

▪ Cannot verify properties for infinite systems

▪ No support for code-level deductive verification
◦ no prior work on PROMELA semantics aimed at deductive reasoning

◦ prior work focus on translation from PROMELA to automaton
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Our goal

▪ Define an executable semantics of PROMELA

▪ Mechanize the semantics to enable automatic generation of tools

▪ Derive a code-level deductive verifier from the mechanized semantics

▪ hope : enable wider range of analysis of existing PROMELA models
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PROMELA in a nutshell
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chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() { 
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() { 
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

variables (e.g., integers, channels)

concurrent processes
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Execution trace
• sequence of atomic actions
• interleaved / synchronized
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p1 p2

d ! 42

d ? x

x+:

x+:

c ! 42 c ? x

atomic!

Execution trace
• sequence of atomic actions
• interleaved / synchronized
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chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() { 
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2
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proctype p2() { 
if
:: x =: 1 -> x+:; /: branch 3
:: do
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:: d ? x -> x+:; /: branch 5
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fi

}

Nondeterminism
• if … fi : nondeterministic selection
• do … od : nondeterministic repetition
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selectable?



PROMELA in a nutshell

19

chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() { 
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() { 
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

Enabledness
- A statement can be executed iff it is enabled
- A branch can be selected iff the guard is enabled

enabled?



PROMELA in a nutshell

20

chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() { 
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() { 
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

Enabledness
- A statement can be executed iff it is enabled
- A branch can be selected iff the guard is enabled

enabled?



PROMELA in a nutshell

21

chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() { 
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() { 
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

Enabledness
- A statement can be executed iff it is enabled
- A branch can be selected iff the guard is enabled

enabled?



PROMELA in a nutshell

22

chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() { 
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() { 
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}
①② || ③(④⑤) → ①’ || ④’

① || ③(④⑤) → ①’ || ④’

① || ④⑤ → ①’ || ④’

① || ④ → ①’ || ④’
handshake!

Proof search over nondeterminism & concurrency

?



Challenge

▪ Problem: dichotomy b/w structural & operational steps
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Challenge

▪ Problem: dichotomy b/w structural & operational steps
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▪ Challenge
◦ design an executable semantics as concrete as an interpreter

◦ so that every operational steps can be executed without any reasoning

search search search

“HOW?”



Our approach

▪ Represent PROMELA programs as continuations of computational tasks
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Our approach

▪ Represent PROMELA programs as continuations of computational tasks

▪ Inspired by continuation-based semantics
◦ programs are flattened into sequences of computational tasks

◦ internal computational steps are represented explicitly
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next computational step



Our approach

▪ Represent PROMELA programs as continuations of computational tasks

▪ Inspired by continuation-based semantics
◦ programs are flattened into as sequences of computational tasks

◦ internal computational steps are represented explicitly
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▪ Generalization: Forked continuation
◦ proof obligations as special cases of computational tasks



Nondeterminism under concurrency

▪ Nondeterministic concurrent processes as a forest
◦ trees for processes

◦ branches for nondeterministic options

29

∥ ∥ ∥



Key Idea: Load-and-Fire
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▪ Semantics design pattern for PROMELA
◦ load rules: proof search (w/o side-effects)

◦ fire rules: discharge a proof obligation (with side-effects)
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load

▪ Semantics design pattern for PROMELA
◦ load rules: proof search (w/o side-effects)

◦ fire rules: discharge a proof obligation (with side-effects)



Key Idea: Load-and-Fire
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load

fire

enabled!

▪ Semantics design pattern for PROMELA
◦ load rules: proof search (w/o side-effects)

◦ fire rules: discharge a proof obligation (with side-effects)



Semantics of if-statements
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if (:: Seq) REST fi

▪ Specified by a load rule
◦ “decompose a proof obligation at leaf”

load



Semantics of if-statements
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Seq

if (:: Seq) REST fi

if REST fi

▪ Specified by a load rule
◦ “decompose a proof obligation at leaf”

load



Semantics of do-statements

▪ Specified by a load rule
◦ “generate a new proof obligation at leaf”

35

do OPTIONS od

load



Semantics of do-statements

▪ Specified by a load rule
◦ “generate a new proof obligation at leaf”
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do OPTIONS odif OPTIONS fi

do OPTIONS od

load



Running example 1
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proctype p2() { 
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

if .:: fi ⊥
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proctype p2() { 
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

do ④⑤ od

⊥

x=:1 x+:
load
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proctype p2() { 
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
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od
fi

}
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⊥
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proctype p2() { 
if
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}
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proctype p2() { 
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

do ④⑤ od

⊥

x=:1 x+:

c?x x+:

d?x x+:assume d is nonempty

load



Running example 1
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proctype p2() { 
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

do ④⑤ od

⊥

x=:1 x+:

c?x x+:

d?x x+:

fire

enabled!



Running example 2
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chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() { 
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() { 
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

⊥

⊥

∥

do .:: od

if .:: fi
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⊥
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⊥

c!42 x+:

d!42 x+:

∥load

!
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chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() { 
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2
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}

proctype p2() { 
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}
do ④⑤ od

⊥

x=:1 x+:

c?x x+:

d?x x+:

⊥

c!42 x+:

d!42 x+:

∥

sender

receiver
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chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() { 
do
:: c ! 42 -> x+:; /: branch 1
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od
}

proctype p2() { 
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
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od
fi

}
do ④⑤ od

⊥

x=:1 x+:

c?x x+:

d?x x+:

⊥

c!42 x+:
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enabled!

enabled!



Load-and-Fire: summary
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▪ Load rules bring proof search into the semantics

▪ Fire rules fire without structural reasoning

▪ Alternation of two such stages enables executable semantics

load fire load fire load fire



Mechanizing the semantics

▪ We mechanized our PROMELA semantics in K Framework
◦ K: semantics framework based on continuations

◦ formalized most of the core features in PROMELA
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Mechanizing the semantics

▪ We mechanized our PROMELA semantics in K Framework
◦ K: semantics framework based on continuations

◦ formalized most of the core features in PROMELA

▪ By design, semantics in K is highly executable
◦ automatically derives model checkers, deductive verifiers, etc. from the semantics

◦ success stories: C, Java, Ethereum, etc.

▪ Used K’s model checker to empirically validate our semantic definitions

▪ Used K’s deductive verifier to formally verify PROMELA programs
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Case study: deductive verification

▪ Target: invariant properties for distributed systems
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Case study: deductive verification

▪ Target: invariant properties for distributed systems

▪ Sometimes K’s deductive verifier can be more powerful than SPIN
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Case study: deductive verification

▪ Target: invariant properties for distributed systems

▪ Sometimes K’s deductive verifier can be more powerful than SPIN

▪ Example: mutex for Lamport’s bakery algorithm
◦ infinite number of reachable states

◦ NOT verifiable by SPIN 

◦ verifiable by K’s deductive verifer

54



Lamport’s bakery algorithm

▪ A distributed mutual exclusion algorithm proposed by Leslie Lamport

55



Lamport’s bakery algorithm

▪ A distributed mutual exclusion algorithm proposed by Leslie Lamport

▪ Two processes enter C.S. by getting tickets from the global counter

56

get the ticket from the counter

exit critical section

enter critical section



Lamport’s bakery algorithm

▪ A distributed mutual exclusion algorithm proposed by Leslie Lamport

▪ Two processes enter C.S. by getting tickets from the global counter

▪ This is an INFINITE system! (out of SPIN’s verification scope)
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get the ticket from the counter

exit critical section

enter critical section



Verifying mutual exclusion
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post-condition : “number of process in critical section <= 1”

∥

pre-condition : “ticket dispenser and server are identically initialized”



Verifying mutual exclusion
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post-condition : “number of process in critical section <= 1”

∥

pre-condition : “ticket dispenser and server are identically initialized”

▪ Result 
◦ deductive verifier automatically verified the spec within 5 mins!

◦ some auxiliary specs were used additionally to aid the reasoning



Conclusion

▪ We designed an executable semantics of PROMELA, enabled by the 
semantic pattern Load-and-Fire based on forked continuations
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Merci!
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