A Formal Executable
Semantics of PROMELA

Byoungho Son, Kyungmin Bae
POSTECH, South Korea
VMCAI 2026, Rennes, France

POSTERPLCH

The PROMELA/SPIN tandem

= Widely used for modeling & veritying concurrent/distributed systems

- PROMELA is the input modeling language
o SPIN is the model checker
o workflow :

parse input

PROMELA code > automaton — SPIN

POSTERPLCH

The PROMELA/SPIN tandem

= Widely used for modeling & veritying concurrent/distributed systems
- PROMELA is the input modeling language

o SPIN is the model checker
o workflow :

parse input

PROMELA code — automaton — SPIN

= Strength :
o SPIN : fully automatic & efficient
o PROMELA : intuitive high-level modeling language

o many application domains (e.g., crypto protocols, linux system calls, etc.)
o received ACM Software System Award 2001

POSTERPLCH

Limitations of PROMELA/SPIN

» SPIN only supports explicit model checking

= Cannot verify properties for infinite systems

= No support for code-level deductive verification
> no prior work on PROMELA semantics aimed at deductive reasoning
o prior work focus on translation from PROMELA to automaton

POSTERPLCH

Our goal

= Define an executable semantics of PROMELA
= Mechanize the semantics to enable automatic generation of tools
= Derive a code-level deductive verifier from the mechanized semantics

* hope : enable wider range of analysis of existing PROMELA models

POSTERPLCH

PROMELA in a nutshell

chan ¢ = [0] of { int };) .
chan d = [3] of { int }; — variables (e.g., integers, channels)
int x = 0; _
proctype p1() { =
do

:rc ! 42 = x+; // branch 1
o d ! 42 = x+; // branch 2

od
}
proctype p2() {
if — concurrent processes
it x = 1 — x+; // branch 3
:: do
22 ¢ ? x = x+; // branch U
22 d? x = x+; // branch 5
od
fi
}

POSTERPLCH

PROMELA in a nutshell

chan ¢ = [0] of { int }; Inter-process communication
;:i”xd;@p] of 1 int ¥ « ¢ : handshake channel (synchronous)

* d: buffered channel (asynchronous)
proctype pl() {

do
:rc ! 42 = x+; // branch 1
o d ! 42 = x+; // branch 2
od
3
proctype p2() {
if
it x = 1 — x+; // branch 3
:: do
22 ¢ ? x = x+; // branch U
22 d? x = x+; // branch 5
od
fi
}

POSTERPLCH

PROMELA in a nutshell

chan ¢ = [0] of { int }; Inter-process communication
;:i”xd;@p] of 1 int ¥ « ¢ : handshake channel (synchronous)

* d: buffered channel (asynchronous)
proctype pl() {

do
o — x+; // branch 1
0 d T2 = x+; // branch 2
od
3
proctype p2() {
if
it x = 1 — x+; // branch 3
:: do
- x+; // branch 4
0 d 7 x = xH; // branch 5
od
fi
}

POSTERPLCH

PROMELA in a nutshell

chan ¢ = [0] of { int }; Inter-process communication
;:i”xd;@p] of 1 int ¥ « ¢ : handshake channel (synchronous)

* d: buffered channel (asynchronous)
proctype pl1() {

c ! 42 — x+; // branch 1

-% x+; // branch 2

}
proctype p2() {
if
it x = 1 — x+; // branch 3
:: do
2 ¢ 2 x = x+; // branch U
:: x+; // branch 5
od
fi
}

POSTERPLCH

PROMELA in a nutshell

chan ¢ = [0] of { int }; Execution trace
Chan d = 131 of Lint 4 * sequence of atomic actions

* interleaved / synchronized
proctype pl1() {

c ! 42 — x+; // branch 1

-% x+; // branch 2 p1 p2

}

d ! 42
proctype p2() {
if
it x = 1 — x+; // branch 3
:: do
22 ¢ ? x = x+; // branch U
22 d? x = x+; // branch 5
od
fi
}

POSTERPLCH

PROMELA in a nutshell

chan ¢ = [0] of { int }; Execution trace
Chan d = 131 of Lint 4 * sequence of atomic actions

* interleaved / synchronized
proctype pl() {
do
:rc ! 42 = x+; // branch 1
o d ! 42 = x+; // branch 2 P1 P2
od
: d ! 42
proctype p2() {
if d ? x
it x = 1 — x+; // branch 3
:: do
- 2 X — x+; // branch 4
:: x+; // branch 5
od
fi
}

POSTERPLCH

PROMELA in a nutshell

chan ¢ = [0] of { int }; Execution trace
Chan d = 131 of Lint 4 « sequence of atomic actions
* interleaved / synchronized
proctype pl() {
do
roc ! 42 = x+k: // branch 1
ood ! 42 / branch 2 P1 P2
od
} d ! 42
proctype p2() {
if d ? x
it x = 1 — x+; // branch 3
;. do X +H
it ¢ ? x = xH; // branch 4
22 d? x = x+; // branch 5
od
fi
}

POSTERPLCH

PROMELA in a nutshell

chan ¢ = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype pl() {

do
:rc ! 42 = x+; // branch 1
o d ! 42 = x+; // branch 2
od
3
proctype p2() {
if
it x = 1 — x+; // branch 3
:: do
2t ¢ ? x > x#; // branch 4
ood ? x // branch 5
od
fi
}

Execution trace
« sequence of atomic actions
* interleaved / synchronized

p1 p2
d ! u2 N
d ? x L
X+
X+ —

interleaved

POSTERPLCH

13

PROMELA in a nutshell

chan ¢ = [0] of { int
chan d = [3] of { int
int x = 0;

proctype pl() {

do
i — X+
d U2 5 x+;
od
¥
proctype p2() {
if
X =1 =5 x+H;
:: do
1 d7TX =
od
fi

}

// branch 1
// branch 2

// branch 3

x+; // branch 4
x+; // branch 5

Execution trace
« sequence of atomic actions
* interleaved / synchronized

p1 p2
d ! u2 N
d ? x L
X+
X+ —
c ! 42 cC? X -

interleaved

synchronized

POSTERPLCH

14

PROMELA in a nutshell

chan ¢ = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype pl() {

do
o c ! 42 = x+; // branch 1
:od ! 42 = x+; // branch 2
od
3
proctype p2() {
if
. x == 1 = x+; // branch 3
:: do
it ¢ ? x = x+; // branch 4
it d? x = x+; // branch 5
od
fi
}

Execution trace
« sequence of atomic actions
* interleaved / synchronized

p1 p2
d ! 42
d ? x
X+ atomicl!
c ! 42 cC ? X

POSTERPLCH

15

PROMELA in a nutshell

chan ¢ = [0] of { int }; Nondeterminism
i:i”xdz‘em of { int }; e if .. fi : nondeterministic selection

« do .. od : nondeterministic repetition

 c ! 42 = x+; // branch 1
bd ! 42 = x+; // branch 2

== 1 — x+; // branch 3

X — x+; // branch 4
X — x+; // branch 5

POSTERPLCH

16

PROMELA in a nutshell

chan ¢ = [0] of { int
chan d = [3] of { int
int x = 0;

proctype pl() {

do
o U2 o x+H
pd ! 42 o x++;
od
3
proctype p2() {
if
X =1 =5 x+H;
:: do
i c?
0d ?
od
fi

}

// branch 1
// branch 2

// branch 3

X — x+; // branch 4
X — x+; // branch 5

Enabledness
- A statement can be executed iff it is enabled
- Abranch can be selected iff the guard is enabled

POSTERPLCH

17

PROMELA in a nutshell

chan ¢ = [0] of { int }; Enabledness
chan d = 131 of { dnt }; - A statement can be executed iff it is enabled

- Abranch can be selected iff the guard is enabled
proctype pl() {

do
:rc ! 42 = x+; // branch 1
o d ! 42 = x+; // branch 2
od
3
proctype p2() {

if _— selectable?

. X

X — x+; // branch 4
X — x+; // branch 5

POSTERPLCH

PROMELA in a nutshell

B e W |

0] of { int };
3] of { int }

proctype pl() {

do

od
}

T C
o d

! 42 = x+H; // branch 1
! 42 = x+H; // branch 2

proctype p2() {

if

fi

o X

== 1 — x+; // branch 3

:: |do

od

?
?

i C
o d

X — x+; // branch 4
X — x+; // branch 5

Enabledness
- A statement can be executed iff it is enabled
- Abranch can be selected iff the guard is enabled

- enabled?

POSTERPLCH

19

PROMELA in a nutshell

chan ¢ = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype pl() {

do

od
}

proctype p2() {

if

fi

1T X ==
.. do

od

1 = x+; // bran

:rc ! 42 = x+; // branch 1
o d ! 42 = x+; // branch 2

x+; // branch 4

— x+; // branch 5

Enabledness
- A statement can be executed iff it is enabled
- Abranch can be selected iff the guard is enabled

__— enabled?

POSTERPLCH

20

PROMELA in a nutshell

chan ¢ = [0] of { int }; Enabledness
i:i”xdz'@m of T dnt }; - A statement can be executed iff it is enabled
- Abranch can be selected iff the guard is enabled
proctype pl() {
do
S [A 1) x+; // branch 1
d! U2 — x branch 2
od
}
proctype p2() { T~ enabled?
if
it x = 1 — x+; // branch 3
:: do
it ¢ ? x = xH; // branch 4
22 d? x = x+; // branch 5
od
f£i
3

POSTERPLCH

PROMELA in a nutshell

chan ¢ = [0] of { int }; Proof search over nondeterminism &concurrency
chan d = [3] of { int };
int x = 0;
. .y handshake!
Tao { Ole-al® |,
o c ! 42 = x+; // branch 1 . :
i d ! 42 = x+; // branch 2 .
od
, Q DNOG - || @ V
proctype p20) {
if
21 x == 1 = x+; // branch 3 @||@(@@)—>®’||@’
:: do .
i1 ¢ ? Xx = x+; // branch 4 2, :
it d? x = x+; // branch 5
od
p D2 B@O) ~» @ || @
?

POSTERPLCH &

Challenge

* Problem: dichotomy b/w structural & operational steps

search search search

P D > —— 6D

POSTERPLCH

23

Challenge

» Problem: dichotomy b/w structural & operational steps

A
search search search

v

P D > —— 6D

/) H OW?II

POSTERPLCH

24

Challenge

» Problem: dichotomy b/w structural & operational steps

A
search search search

"HOW?"

v

P D > —— 6D

A4

= Challenge
- design an executable semantics as concrete as an interpreter
o so that every operational steps can be executed without any reasoning

D2 oo ' oo ' D &

POSTERPLCH =

Our approach

= Represent PROMELA programs as continuations of computational tasks

POSTERPLCH 26

Our approach

= Represent PROMELA programs as continuations of computational tasks

* Inspired by continuation-based semantics
o programs are flattened into sequences of computational tasks
o internal computational steps are represented explicitly

next computational step

POSTERPLCH

27

Our approach

= Represent PROMELA programs as continuations of computational tasks

* Inspired by continuation-based semantics
o programs are flattened into as sequences of computational tasks
o internal computational steps are represented explicitly

» Generalization: Forked continuation
- proof obligations as special cases of computational tasks

POSTERPLCH

28

Nondeterminism under concurrency

* Nondeterministic concurrent processes as a forest
o trees for processes
o branches for nondeterministic options

../_b’\ ../_\O\ o/—\o’\
mooo/\tf—\ ooo/\t) mooo/\tf—\ ooo/\t) P) m"'/—\&_\ eoe
o " —~ | | =

POSTERPLCH

29

Key Idea: Load-and-Fire

= Semantics design pattern for PROMELA
o load rules: proof search (w/o side-effects)
o fire rules: discharge a proof obligation (with side-effects)

POSTERPLCH

30

Key Idea: Load-and-Fire

= Semantics design pattern for PROMELA
o load rules: proof search (w/o side-effects)
o fire rules: discharge a proof obligation (with side-effects)

» ¢ T .o U
if...m-"/\O > @ U eee” U .7 O

POSTERPLCH

31

Key Idea: Load-and-Fire

= Semantics design pattern for PROMELA

o load rules: proof search (w/o side-effects)
o fire rules: discharge a proof obligation (with side-effects)

» ¢ T .o U
if...m-"/\O > @ U eee” U .7 O

enabled!

fire

—) /j:)

e

POSTERPLCH

32

Semantics of if-statements

= Specified by a load rule

o "decompose a proof obligation at leaf”

Cir o sep rest a5 (O eee

load

POSTERPLCH

33

Semantics of if-statements

= Specified by a load rule

o "decompose a proof obligation at leaf”

Cir o sep rest a5 (O eee

load @
‘ o 00
QREST £i

POSTERPLCH

34

Semantics of do-statements

= Specified by a load rule

o "generate a new proof obligation at leaf”

Q OPTIONS U\ coe

load

POSTERPLCH

35

Semantics of do-statements

= Specified by a load rule

o "generate a new proof obligation at leaf”

@ OPTIONSD—\ coe
load
— G OPTIONSm OPTIONSJ\ coo

POSTERPLCH

36

Running example 1

proctype p2() {
if
0 x == 1 = x+; // branch 3
;. do
2t ¢ ? X = x+H; // branch 4
::d ? x > x+; // branch 5
od
fi
¥

POSTERPLCH

Running example 1

proctype p2() {
if
0 x == 1 = x+; // branch 3
;. do
2t ¢ ? X = x+H; // branch 4
::d ? x > x+; // branch 5
od
fi
¥

load

POSTERPLCH

Running example 1

proctype p2() {
if
0 x == 1 = x+; // branch 3
;. do

2t ¢ ? X = x+H; // branch 4
::d ? x > x+; // branch 5
od
fi
¥
load

POSTERPLCH

Running example 1

proctype p2() {
if
0 x == 1 = x+; // branch 3
;. do
2t ¢ ? X = x+H; // branch 4
::d ? x > x+; // branch 5
od
fi
¥

load

POSTERPLCH

Running example 1

proctype p2() {
if
0 x == 1 = x+; // branch 3
;. do
2t ¢ ? X = x+H; // branch 4
::d ? x > x+; // branch 5
od
fi
¥

load

POSTERPLCH

Running example 1

proctype p2() {
if
0 x == 1 = x+; // branch 3
;. do

2t ¢ ? X = x+H; // branch 4
::d ? x > x+; // branch 5
od
fi
¥
fire
ﬁ

do @& od

enabled! { d?x

POSTERPLCH

Running example 2

chan ¢ = [0] of { int };
chan d

[3] of { int };
proctype pl() {

do
:rc ! 42 = x+; // branch 1
o d ! 42 = x+; // branch 2
od —_—
} —
proctype p2() {
if
it x = 1 — x+; // branch 3
:: do
it ¢ ? x = xH; // branch 4 . .
it d? x = x+; // branch 5 G g-\@
od
fi
}

POSTERPLCH 43

Running example 2

chan ¢ = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype pl() {

do
o c ! 42 = x+; // branch 1
:od ! 42 = x+; // branch 2
od
3
proctype p2() {
if
. x == 1 = x+; // branch 3
:: do
it ¢ ? x = x+; // branch 4
it d? x = x+; // branch 5
od
fi
}

POSTERPLCH

44

Running example 2

chan ¢ = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype pl() {

do
o c ! 42 = x+; // branch 1
:od ! 42 = x+; // branch 2
od
3
proctype p2() {
if
. x == 1 = x+; // branch 3
:: do
it ¢ ? x = x+; // branch 4
it d? x = x+; // branch 5
od
fi
}

sender

receiver

POSTERPLCH

45

Running example 2

chan ¢ = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype pl() {
do
o c ! 42 = x+; // branch 1
:od ! 42 = x+; // branch 2

od
3
proctype p2() {
if
. x == 1 = x+; // branch 3
:: do
it ¢ ? x = x+; // branch 4
it d? x = x+; // branch 5
od
fi

}

enabled!

tttt

d!'g2 X+
fire
— —
enabled! N X+

POSTERPLCH

46

Load-and-Fire: summary

= Load rules bring proof search into the semantics

= Fire rules fire without structural reasoning
= Alternation of two such stages enables executable semantics

load fire load fire load fire

R T T R e Y

POSTERPLCH

47

Mechanizing the semantics

= \We mechanized our PROMELA semantics in K Framework
o K: semantics framework based on continuations
o formalized most of the core features in PROMELA

POSTERPLCH

48

Mechanizing the semantics

= \We mechanized our PROMELA semantics in K Framework
o K: semantics framework based on continuations
o formalized most of the core features in PROMELA

= By design, semantics in K'is highly executable
- automatically derives model checkers, deductive verifiers, etc. from the semantics
o success stories: C, Java, Ethereum, etc.

POSTERPLCH =

Mechanizing the semantics

= \We mechanized our PROMELA semantics in K Framework
o K: semantics framework based on continuations
o formalized most of the core features in PROMELA

= By design, semantics in K'is highly executable
o automatically derives model checkers, deductive verifiers, etc. from the semantics
o success stories: C, Java, Ethereum, etc.

» Used K's model checker to empirically validate our semantic definitions

POSTERPLCH >0

Mechanizing the semantics

= \We mechanized our PROMELA semantics in K Framework
o K: semantics framework based on continuations
o formalized most of the core features in PROMELA

= By design, semantics in K'is highly executable
o automatically derives model checkers, deductive verifiers, etc. from the semantics
o success stories: C, Java, Ethereum, etc.

» Used K's model checker to empirically validate our semantic definitions
» Used K's deductive verifier to formally verify PROMELA programs

POSTERPLCH

51

Case study: deductive verification

= Target: invariant properties for distributed systems

POSTERPLCH

52

Case study: deductive verification

= Target: invariant properties for distributed systems
= Sometimes K’s deductive verifier can be more powerful than SPIN

POSTERPLCH

53

Case study: deductive verification

= Target: invariant properties for distributed systems
= Sometimes K’'s deductive verifier can be more powerful than SPIN

= Example: mutex for Lamport’s bakery algorithm

o infinite number of reachable states
- NOT verifiable by SPIN
o verifiable by K's deductive verifer

POSTERPLCH

54

Lamport’s bakery algorithm

= A distributed mutual exclusion algorithm proposed by Leslie Lamport

int disp = 0, serv = 0, crit = 0;
active [2] proctype p() { // activates p1, p2
int tick = 0;

do
:: atomic { tick = disp; disp = disp + 1 }
; atomic { tick == serv; crit = crit + 1 }
; atomic { serv = serv + 1; crit = crit - 1 }
od
}

active proctype monitor() { freeze } // for mutex

POSTERPLCH

Lamport’s bakery algorithm

» A distributed mutual exclusion algorithm proposed by Leslie Lamport

= Two processes enter C.S. by getting tickets from the global counter

int disp = 0, serv = 0, crit = 0;
active [2] proctype p() { // activates p1, p2
int tick = 0;

do
:: atomic { tick = disp; disp = disp + 1 }—/////
; atomic { tick == serv; crit = crit + 1 } —
; atomic { serv = serv + 1; crit = crit - 1 } J

od

}

active proctype monitor() { freeze } // for mutex

| get the ticket from the counter

—— enter critical section

~ exit critical section

POSTERPLCH

56

Lamport’s bakery algorithm

» A distributed mutual exclusion algorithm proposed by Leslie Lamport

= Two processes enter C.S. by getting tickets from the global counter

= This is an INFINITE system! (out of SPIN's ve

rification scope)

int disp = 0, serv = 0, crit = 0;
active [2] proctype p() { // activates p1, p2
int tick = 0;

do
:: atomic { tick = disp; disp = disp + 1 }—/////
; atomic { tick == serv; crit = crit + 1 } —
; atomic { serv = serv + 1; crit = crit - 1 } o
od
}

| get the ticket from the counter

—— enter critical section

~ exit critical section

active proctype monitor() { freeze } // for mutex

POSTERPLCH

57

Veritying mutual exclusion

pre-condition : “ticket dispenser and server are identically initialized”

do

od

:: atomic { tick = disp; disp = disp + 1 }

; atomic { tick == serv; crit = crit + 1 }
; atomic { serv = serv + 1; crit = crit - 1 }

do
:: atomic { tick = disp; disp = disp + 1 }
; atomic { tick == serv; crit = crit + 1 }
; atomic { serv = serv + 1; crit = crit - 1 }
od

post-condition : “number of process in

critical section <= 1"

POSTERPLCH

58

Veritying mutual exclusion

pre-condition : “ticket dispenser and server are identically initialized”

crit - 1 }

do
:: atomic { tick = disp; disp = disp + 1 }
; atomic { tick == serv; crit = crit + 1 }
; atomic { serv = serv + 1; crit =
od

do
:: atomic { tick = disp; disp = disp + 1 }
; atomic { tick == serv; crit = crit + 1 }
; atomic { serv = serv + 1; crit = crit - 1 }
od

post-condition : “number of process in critical section <= 1"

= Result

o deductive verifier automatically verified the spec within 5 mins!
o some auxiliary specs were used additionally to aid the reasoning

POSTERPLCH

59

Conclusion

= We designed an executable semantics of PROMELA, enabled by the
semantic pattern Load-and-Fire based on forked continuations

POSTERPLCH

60

Conclusion

= We designed an executable semantics of PROMELA, enabled by the
semantic pattern Load-and-Fire based on forked continuations

* \We mechanized the semantics in the K framework, which opens the
door to code-level deductive reasoning over PROMELA programs

POSTERPLCH

61

Conclusion

= We designed an executable semantics of PROMELA, enabled by the
semantic pattern Load-and-Fire based on forked continuations

* \We mechanized the semantics in the K framework, which opens the
door to code-level deductive reasoning over PROMELA programs

* We demonstrated that our deductive verifier can verify systems w/
infinite number of states, which is out of SPIN’s capability

POSTERPLCH o2

Conclusion

= We designed an executable semantics of PROMELA, enabled by the
semantic pattern Load-and-Fire based on forked continuations

* \We mechanized the semantics in the K framework, which opens the
door to code-level deductive reasoning over PROMELA programs

* We demonstrated that our deductive verifier can verify systems w/
infinite number of states, which is out of SPIN’s capability

= Future work
o extend the deductive reasoning to LTL properties
o extend the case study for parametric models with arbitrary number of processes

POSTERPLCH e

Conclusion

= We designed an executable semantics of PROMELA, enabled by the
semantic pattern Load-and-Fire based on forked continuations

* \We mechanized the semantics in the K framework, which opens the
door to code-level deductive reasoning over PROMELA programs

* We demonstrated that our deductive verifier can verify systems w/
infinite number of states, which is out of SPIN’s capability

= Future work
o extend the deductive reasoning to LTL properties
o extend the case study for parametric models with arbitrary number of processes

Merci!

POSTERPLCH &

	슬라이드 1: A Formal Executable Semantics of PROMELA
	슬라이드 2: The PROMELA/SPIN tandem
	슬라이드 3: The PROMELA/SPIN tandem
	슬라이드 4: Limitations of PROMELA/SPIN
	슬라이드 5: Our goal
	슬라이드 6: PROMELA in a nutshell
	슬라이드 7: PROMELA in a nutshell
	슬라이드 8: PROMELA in a nutshell
	슬라이드 9: PROMELA in a nutshell
	슬라이드 10: PROMELA in a nutshell
	슬라이드 11: PROMELA in a nutshell
	슬라이드 12: PROMELA in a nutshell
	슬라이드 13: PROMELA in a nutshell
	슬라이드 14: PROMELA in a nutshell
	슬라이드 15: PROMELA in a nutshell
	슬라이드 16: PROMELA in a nutshell
	슬라이드 17: PROMELA in a nutshell
	슬라이드 18: PROMELA in a nutshell
	슬라이드 19: PROMELA in a nutshell
	슬라이드 20: PROMELA in a nutshell
	슬라이드 21: PROMELA in a nutshell
	슬라이드 22: PROMELA in a nutshell
	슬라이드 23: Challenge
	슬라이드 24: Challenge
	슬라이드 25: Challenge
	슬라이드 26: Our approach
	슬라이드 27: Our approach
	슬라이드 28: Our approach
	슬라이드 29: Nondeterminism under concurrency
	슬라이드 30: Key Idea: Load-and-Fire
	슬라이드 31: Key Idea: Load-and-Fire
	슬라이드 32: Key Idea: Load-and-Fire
	슬라이드 33: Semantics of if-statements
	슬라이드 34: Semantics of if-statements
	슬라이드 35: Semantics of do-statements
	슬라이드 36: Semantics of do-statements
	슬라이드 37: Running example 1
	슬라이드 38: Running example 1
	슬라이드 39: Running example 1
	슬라이드 40: Running example 1
	슬라이드 41: Running example 1
	슬라이드 42: Running example 1
	슬라이드 43: Running example 2
	슬라이드 44: Running example 2
	슬라이드 45: Running example 2
	슬라이드 46: Running example 2
	슬라이드 47: Load-and-Fire: summary
	슬라이드 48: Mechanizing the semantics
	슬라이드 49: Mechanizing the semantics
	슬라이드 50: Mechanizing the semantics
	슬라이드 51: Mechanizing the semantics
	슬라이드 52: Case study: deductive verification
	슬라이드 53: Case study: deductive verification
	슬라이드 54: Case study: deductive verification
	슬라이드 55: Lamport’s bakery algorithm
	슬라이드 56: Lamport’s bakery algorithm
	슬라이드 57: Lamport’s bakery algorithm
	슬라이드 58: Verifying mutual exclusion
	슬라이드 59: Verifying mutual exclusion
	슬라이드 60: Conclusion
	슬라이드 61: Conclusion
	슬라이드 62: Conclusion
	슬라이드 63: Conclusion
	슬라이드 64: Conclusion

