
A Formal Executable
Semantics of PROMELA

Byoungho Son, Kyungmin Bae

POSTECH, South Korea

VMCAI 2026, Rennes, France

1

The PROMELA/SPIN tandem

▪ Widely used for modeling & verifying concurrent/distributed systems
◦ PROMELA is the input modeling language

◦ SPIN is the model checker

◦ workflow :

2

PROMELA code automaton SPIN
parse input

The PROMELA/SPIN tandem

▪ Widely used for modeling & verifying concurrent/distributed systems
◦ PROMELA is the input modeling language

◦ SPIN is the model checker

◦ workflow :

3

PROMELA code

▪ Strength :
◦ SPIN : fully automatic & efficient

◦ PROMELA : intuitive high-level modeling language

◦ many application domains (e.g., crypto protocols, linux system calls, etc.)

◦ received ACM Software System Award 2001

automaton SPIN
parse input

Limitations of PROMELA/SPIN

▪ SPIN only supports explicit model checking

▪ Cannot verify properties for infinite systems

▪ No support for code-level deductive verification
◦ no prior work on PROMELA semantics aimed at deductive reasoning

◦ prior work focus on translation from PROMELA to automaton

4

Our goal

▪ Define an executable semantics of PROMELA

▪ Mechanize the semantics to enable automatic generation of tools

▪ Derive a code-level deductive verifier from the mechanized semantics

▪ hope : enable wider range of analysis of existing PROMELA models

5

PROMELA in a nutshell

6

chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() {
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

variables (e.g., integers, channels)

concurrent processes

PROMELA in a nutshell

7

chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() {
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

Inter-process communication
• c : handshake channel (synchronous)
• d : buffered channel (asynchronous)

PROMELA in a nutshell

8

chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() {
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

Inter-process communication
• c : handshake channel (synchronous)
• d : buffered channel (asynchronous)

PROMELA in a nutshell

9

chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() {
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

Inter-process communication
• c : handshake channel (synchronous)
• d : buffered channel (asynchronous)

PROMELA in a nutshell

10

chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() {
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

p1 p2

d ! 42

d ? x

x+:

x+:

c ! 42 c ? x

Execution trace
• sequence of atomic actions
• interleaved / synchronized

PROMELA in a nutshell

11

chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() {
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

p1 p2

d ! 42

d ? x

x+:

x+:

c ! 42 c ? x

Execution trace
• sequence of atomic actions
• interleaved / synchronized

PROMELA in a nutshell

12

chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() {
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

p1 p2

d ! 42

d ? x

x+:

x+:

c ! 42 c ? x

Execution trace
• sequence of atomic actions
• interleaved / synchronized

PROMELA in a nutshell

13

chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() {
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

p1 p2

d ! 42

d ? x

x+:

x+:

c ! 42 c ? x

Execution trace
• sequence of atomic actions
• interleaved / synchronized

interleaved

PROMELA in a nutshell

14

chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() {
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

p1 p2

d ! 42

d ? x

x+:

x+:

c ! 42 c ? x

Execution trace
• sequence of atomic actions
• interleaved / synchronized

synchronized. . .

interleaved

PROMELA in a nutshell

15

chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() {
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

p1 p2

d ! 42

d ? x

x+:

x+:

c ! 42 c ? x

atomic!

Execution trace
• sequence of atomic actions
• interleaved / synchronized

PROMELA in a nutshell

16

chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() {
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

Nondeterminism
• if … fi : nondeterministic selection
• do … od : nondeterministic repetition

PROMELA in a nutshell

17

chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() {
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

Enabledness
- A statement can be executed iff it is enabled
- A branch can be selected iff the guard is enabled

PROMELA in a nutshell

18

chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() {
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

Enabledness
- A statement can be executed iff it is enabled
- A branch can be selected iff the guard is enabled

selectable?

PROMELA in a nutshell

19

chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() {
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

Enabledness
- A statement can be executed iff it is enabled
- A branch can be selected iff the guard is enabled

enabled?

PROMELA in a nutshell

20

chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() {
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

Enabledness
- A statement can be executed iff it is enabled
- A branch can be selected iff the guard is enabled

enabled?

PROMELA in a nutshell

21

chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() {
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

Enabledness
- A statement can be executed iff it is enabled
- A branch can be selected iff the guard is enabled

enabled?

PROMELA in a nutshell

22

chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() {
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}
①② || ③(④⑤) → ①’ || ④’

① || ③(④⑤) → ①’ || ④’

① || ④⑤ → ①’ || ④’

① || ④ → ①’ || ④’
handshake!

Proof search over nondeterminism & concurrency

?

Challenge

▪ Problem: dichotomy b/w structural & operational steps

23

search search search

Challenge

▪ Problem: dichotomy b/w structural & operational steps

24

search search search

“HOW?”

Challenge

▪ Problem: dichotomy b/w structural & operational steps

25

▪ Challenge
◦ design an executable semantics as concrete as an interpreter

◦ so that every operational steps can be executed without any reasoning

search search search

“HOW?”

Our approach

▪ Represent PROMELA programs as continuations of computational tasks

26

Our approach

▪ Represent PROMELA programs as continuations of computational tasks

▪ Inspired by continuation-based semantics
◦ programs are flattened into sequences of computational tasks

◦ internal computational steps are represented explicitly

27

next computational step

Our approach

▪ Represent PROMELA programs as continuations of computational tasks

▪ Inspired by continuation-based semantics
◦ programs are flattened into as sequences of computational tasks

◦ internal computational steps are represented explicitly

28

▪ Generalization: Forked continuation
◦ proof obligations as special cases of computational tasks

Nondeterminism under concurrency

▪ Nondeterministic concurrent processes as a forest
◦ trees for processes

◦ branches for nondeterministic options

29

∥ ∥ ∥

Key Idea: Load-and-Fire

30

▪ Semantics design pattern for PROMELA
◦ load rules: proof search (w/o side-effects)

◦ fire rules: discharge a proof obligation (with side-effects)

Key Idea: Load-and-Fire

31

load

▪ Semantics design pattern for PROMELA
◦ load rules: proof search (w/o side-effects)

◦ fire rules: discharge a proof obligation (with side-effects)

Key Idea: Load-and-Fire

32

load

fire

enabled!

▪ Semantics design pattern for PROMELA
◦ load rules: proof search (w/o side-effects)

◦ fire rules: discharge a proof obligation (with side-effects)

Semantics of if-statements

33

if (:: Seq) REST fi

▪ Specified by a load rule
◦ “decompose a proof obligation at leaf”

load

Semantics of if-statements

34

Seq

if (:: Seq) REST fi

if REST fi

▪ Specified by a load rule
◦ “decompose a proof obligation at leaf”

load

Semantics of do-statements

▪ Specified by a load rule
◦ “generate a new proof obligation at leaf”

35

do OPTIONS od

load

Semantics of do-statements

▪ Specified by a load rule
◦ “generate a new proof obligation at leaf”

36

do OPTIONS odif OPTIONS fi

do OPTIONS od

load

Running example 1

37

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

if .:: fi ⊥

Running example 1

38

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

do ④⑤ od

⊥

x=:1 x+:
load

Running example 1

39

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

do ④⑤ od

⊥

x=:1 x+:

if ④⑤ fi

load

Running example 1

40

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

do ④⑤ od

⊥

x=:1 x+:

c?x x+:

d?x x+:

load

Running example 1

41

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

do ④⑤ od

⊥

x=:1 x+:

c?x x+:

d?x x+:assume d is nonempty

load

Running example 1

42

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

do ④⑤ od

⊥

x=:1 x+:

c?x x+:

d?x x+:

fire

enabled!

Running example 2

43

chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() {
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}

⊥

⊥

∥

do .:: od

if .:: fi

Running example 2

44

chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() {
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}
do ④⑤ od

⊥

x=:1 x+:

c?x x+:

d?x x+:

⊥

c!42 x+:

d!42 x+:

∥load

!

Running example 2

45

chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() {
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}
do ④⑤ od

⊥

x=:1 x+:

c?x x+:

d?x x+:

⊥

c!42 x+:

d!42 x+:

∥

sender

receiver

Running example 2

46

chan c = [0] of { int };
chan d = [3] of { int };
int x = 0;

proctype p1() {
do
:: c ! 42 -> x+:; /: branch 1
:: d ! 42 -> x+:; /: branch 2

od
}

proctype p2() {
if
:: x =: 1 -> x+:; /: branch 3
:: do

:: c ? x -> x+:; /: branch 4
:: d ? x -> x+:; /: branch 5

od
fi

}
do ④⑤ od

⊥

x=:1 x+:

c?x x+:

d?x x+:

⊥

c!42 x+:

d!42 x+:

∥fire

enabled!

enabled!

Load-and-Fire: summary

47

▪ Load rules bring proof search into the semantics

▪ Fire rules fire without structural reasoning

▪ Alternation of two such stages enables executable semantics

load fire load fire load fire

Mechanizing the semantics

▪ We mechanized our PROMELA semantics in K Framework
◦ K: semantics framework based on continuations

◦ formalized most of the core features in PROMELA

48

Mechanizing the semantics

▪ We mechanized our PROMELA semantics in K Framework
◦ K: semantics framework based on continuations

◦ formalized most of the core features in PROMELA

▪ By design, semantics in K is highly executable
◦ automatically derives model checkers, deductive verifiers, etc. from the semantics

◦ success stories: C, Java, Ethereum, etc.

49

Mechanizing the semantics

▪ We mechanized our PROMELA semantics in K Framework
◦ K: semantics framework based on continuations

◦ formalized most of the core features in PROMELA

▪ By design, semantics in K is highly executable
◦ automatically derives model checkers, deductive verifiers, etc. from the semantics

◦ success stories: C, Java, Ethereum, etc.

▪ Used K’s model checker to empirically validate our semantic definitions

50

Mechanizing the semantics

▪ We mechanized our PROMELA semantics in K Framework
◦ K: semantics framework based on continuations

◦ formalized most of the core features in PROMELA

▪ By design, semantics in K is highly executable
◦ automatically derives model checkers, deductive verifiers, etc. from the semantics

◦ success stories: C, Java, Ethereum, etc.

▪ Used K’s model checker to empirically validate our semantic definitions

▪ Used K’s deductive verifier to formally verify PROMELA programs

51

Case study: deductive verification

▪ Target: invariant properties for distributed systems

52

Case study: deductive verification

▪ Target: invariant properties for distributed systems

▪ Sometimes K’s deductive verifier can be more powerful than SPIN

53

Case study: deductive verification

▪ Target: invariant properties for distributed systems

▪ Sometimes K’s deductive verifier can be more powerful than SPIN

▪ Example: mutex for Lamport’s bakery algorithm
◦ infinite number of reachable states

◦ NOT verifiable by SPIN

◦ verifiable by K’s deductive verifer

54

Lamport’s bakery algorithm

▪ A distributed mutual exclusion algorithm proposed by Leslie Lamport

55

Lamport’s bakery algorithm

▪ A distributed mutual exclusion algorithm proposed by Leslie Lamport

▪ Two processes enter C.S. by getting tickets from the global counter

56

get the ticket from the counter

exit critical section

enter critical section

Lamport’s bakery algorithm

▪ A distributed mutual exclusion algorithm proposed by Leslie Lamport

▪ Two processes enter C.S. by getting tickets from the global counter

▪ This is an INFINITE system! (out of SPIN’s verification scope)

57

get the ticket from the counter

exit critical section

enter critical section

Verifying mutual exclusion

58

post-condition : “number of process in critical section <= 1”

∥

pre-condition : “ticket dispenser and server are identically initialized”

Verifying mutual exclusion

59

post-condition : “number of process in critical section <= 1”

∥

pre-condition : “ticket dispenser and server are identically initialized”

▪ Result
◦ deductive verifier automatically verified the spec within 5 mins!

◦ some auxiliary specs were used additionally to aid the reasoning

Conclusion

▪ We designed an executable semantics of PROMELA, enabled by the
semantic pattern Load-and-Fire based on forked continuations

60

Conclusion

▪ We designed an executable semantics of PROMELA, enabled by the
semantic pattern Load-and-Fire based on forked continuations

▪ We mechanized the semantics in the K framework, which opens the
door to code-level deductive reasoning over PROMELA programs

61

Conclusion

▪ We designed an executable semantics of PROMELA, enabled by the
semantic pattern Load-and-Fire based on forked continuations

▪ We mechanized the semantics in the K framework, which opens the
door to code-level deductive reasoning over PROMELA programs

▪ We demonstrated that our deductive verifier can verify systems w/
infinite number of states, which is out of SPIN’s capability

62

Conclusion

▪ We designed an executable semantics of PROMELA, enabled by the
semantic pattern Load-and-Fire based on forked continuations

▪ We mechanized the semantics in the K framework, which opens the
door to code-level deductive reasoning over PROMELA programs

▪ We demonstrated that our deductive verifier can verify systems w/
infinite number of states, which is out of SPIN’s capability

▪ Future work
◦ extend the deductive reasoning to LTL properties

◦ extend the case study for parametric models with arbitrary number of processes

63

Conclusion

▪ We designed an executable semantics of PROMELA, enabled by the
semantic pattern Load-and-Fire based on forked continuations

▪ We mechanized the semantics in the K framework, which opens the
door to code-level deductive reasoning over PROMELA programs

▪ We demonstrated that our deductive verifier can verify systems w/
infinite number of states, which is out of SPIN’s capability

▪ Future work
◦ extend the deductive reasoning to LTL properties

◦ extend the case study for parametric models with arbitrary number of processes

64

Merci!

	슬라이드 1: A Formal Executable Semantics of PROMELA
	슬라이드 2: The PROMELA/SPIN tandem
	슬라이드 3: The PROMELA/SPIN tandem
	슬라이드 4: Limitations of PROMELA/SPIN
	슬라이드 5: Our goal
	슬라이드 6: PROMELA in a nutshell
	슬라이드 7: PROMELA in a nutshell
	슬라이드 8: PROMELA in a nutshell
	슬라이드 9: PROMELA in a nutshell
	슬라이드 10: PROMELA in a nutshell
	슬라이드 11: PROMELA in a nutshell
	슬라이드 12: PROMELA in a nutshell
	슬라이드 13: PROMELA in a nutshell
	슬라이드 14: PROMELA in a nutshell
	슬라이드 15: PROMELA in a nutshell
	슬라이드 16: PROMELA in a nutshell
	슬라이드 17: PROMELA in a nutshell
	슬라이드 18: PROMELA in a nutshell
	슬라이드 19: PROMELA in a nutshell
	슬라이드 20: PROMELA in a nutshell
	슬라이드 21: PROMELA in a nutshell
	슬라이드 22: PROMELA in a nutshell
	슬라이드 23: Challenge
	슬라이드 24: Challenge
	슬라이드 25: Challenge
	슬라이드 26: Our approach
	슬라이드 27: Our approach
	슬라이드 28: Our approach
	슬라이드 29: Nondeterminism under concurrency
	슬라이드 30: Key Idea: Load-and-Fire
	슬라이드 31: Key Idea: Load-and-Fire
	슬라이드 32: Key Idea: Load-and-Fire
	슬라이드 33: Semantics of if-statements
	슬라이드 34: Semantics of if-statements
	슬라이드 35: Semantics of do-statements
	슬라이드 36: Semantics of do-statements
	슬라이드 37: Running example 1
	슬라이드 38: Running example 1
	슬라이드 39: Running example 1
	슬라이드 40: Running example 1
	슬라이드 41: Running example 1
	슬라이드 42: Running example 1
	슬라이드 43: Running example 2
	슬라이드 44: Running example 2
	슬라이드 45: Running example 2
	슬라이드 46: Running example 2
	슬라이드 47: Load-and-Fire: summary
	슬라이드 48: Mechanizing the semantics
	슬라이드 49: Mechanizing the semantics
	슬라이드 50: Mechanizing the semantics
	슬라이드 51: Mechanizing the semantics
	슬라이드 52: Case study: deductive verification
	슬라이드 53: Case study: deductive verification
	슬라이드 54: Case study: deductive verification
	슬라이드 55: Lamport’s bakery algorithm
	슬라이드 56: Lamport’s bakery algorithm
	슬라이드 57: Lamport’s bakery algorithm
	슬라이드 58: Verifying mutual exclusion
	슬라이드 59: Verifying mutual exclusion
	슬라이드 60: Conclusion
	슬라이드 61: Conclusion
	슬라이드 62: Conclusion
	슬라이드 63: Conclusion
	슬라이드 64: Conclusion

